Skip to main content
Log in

Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Detection of patients with vertebral fracture is similar for areal bone mineral density (aBMD) and trabecular bone score (TBS) in patients with non-vertebral fracture. In non-osteoporotic patients, TBS adds information to lumbar spine aBMD and is related to an index of spine deterioration.

Introduction

Vertebral fractures (VFs) are more predictive of future fracture than aBMD. The number and severity of VFs are related to microarchitecture deterioration. TBS has been shown to be related to microarchitecture. The study aimed at evaluating TBS in the prediction of the presence and severity of VFs.

Methods

Patients were selected from a Fracture Liaison Service (FLS): aBMD and vertebral fracture assessment (VFA) were assessed after the fracture, using dual-energy X-ray-absorptiometry (DXA). VFs were classified using Genant's semiquantitative method and severity, using the spinal deformity index (SDI). TBS was obtained after analysis of DXA scans. Performance of TBS and aBMD was assessed using areas under the curves (AUCs).

Results

A total of 362 patients (77.3 % women; mean age 74.3 ± 11.7 years) were analysed. Prevalence of VFs was 36.7 %, and 189 patients (52.2 %) were osteoporotic. Performance of TBS was similar to lumbar spine (LS) aBMD and hip aBMD for the identification of patients with VFs. In the population with aBMD in the non-osteoporotic range (n = 173), AUC of TBS for the discrimination of VFs was higher than the AUC of LS aBMD (0.670 vs 0.541, p = 0.035) but not of hip aBMD; there was a negative correlation between TBS and SDI (r = −0.31; p < 0.0001).

Conclusion

Detection of patients with vertebral fracture is similar for aBMD and TBS in patients with non-vertebral fracture. In patients with aBMD in the non-osteoporotic range, TBS adds information to lumbar spine aBMD alone and is related to an index of spine deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cummings SR et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  Google Scholar 

  3. Stone KL et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  4. Siris ES et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  CAS  PubMed  Google Scholar 

  5. Miller PD et al (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17:2222–2230

    Article  PubMed  Google Scholar 

  6. Schuit SC et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  7. Netelenbos JC, Lems WF, Geusens PP et al (2009) Spine radiographs to improve the identification of women at high risk for fractures. Osteoporos Int 20:1347–1352

    Article  CAS  PubMed  Google Scholar 

  8. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18:761–770

    Article  CAS  PubMed  Google Scholar 

  9. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    Article  CAS  PubMed  Google Scholar 

  10. Kerkeni S, Kolta S, Fechtenbaum J, Roux C (2009) Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int 20:1547–1552

    Article  CAS  PubMed  Google Scholar 

  11. Genant HK, Delmas PD, Chen P et al (2007) Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 18:69–76

    Article  CAS  PubMed  Google Scholar 

  12. Hordon LD, Raisi M, Paxton S, Beneton MM, Kanis JA, Aaron JE (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: part I. 2-D histology. Bone 27:271–276

    Article  CAS  PubMed  Google Scholar 

  13. Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    Article  CAS  PubMed  Google Scholar 

  14. O'Neill TW, Cockerill W, Matthis C (2004) Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 15:760–765

    Article  PubMed  Google Scholar 

  15. Cockerill W, Lunt M, Silman AJ et al (2004) Health-related quality of life and radiographic vertebral fracture. Osteoporos Int 15:113–119

    Article  CAS  PubMed  Google Scholar 

  16. Roux C, Baron G, Audran M et al (2011) Influence of vertebral fracture assessment by dual-energy X-ray absorptiometry on decision-making in osteoporosis: a structured vignette survey. Rheumatology (Oxford) 50:2264–2269

    Article  Google Scholar 

  17. Damiano J, Kolta S, Porcher R, Tournoux C, Dougados M, Roux C (2006) Diagnosis of vertebral fractures by vertebral fracture assessment. J Clin Densitom 9:66–71

    Article  PubMed  Google Scholar 

  18. Chapurlat RD, Duboeuf F, Marion-Audibert HO, Kalpakçioglu B, Mitlak BH, Delmas PD (2006) Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture. Osteoporos Int 17:1189–1195

    Article  CAS  PubMed  Google Scholar 

  19. Schousboe JT, Vokes T, Broy SB, Ferrar L, McKiernan F, Roux C, Binkley N (2008) Vertebral Fracture Assessment: the 2007 ISCD official positions. J Clin Densitom 11:92–108

    Article  PubMed  Google Scholar 

  20. Bousson V, Bergot C, Sutter B et al (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–5010

    Article  CAS  PubMed  Google Scholar 

  21. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787

    Article  PubMed  Google Scholar 

  22. Winzenrieth R, Michelet F, Hans D (2012) Three-dimensional (3D) microarchitecture correlations with 2D projection image grey level variations assessed by TBS using high resolution CT acquisitions: effects of resolution and noise. J Clin Densitom 16(3):287–96. doi:10.1016/j.jocd.2012.05.001

    Article  PubMed  Google Scholar 

  23. Hans D, Barthe N, Boutroy S, Winzenrieth R, Pothuaud L, Krieg M-A (2011) Correlations between TBS, measured using antero-posterior DXA acquisition, and 3D parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312

    Article  PubMed  Google Scholar 

  24. Pothuaud L, Barthe N, Krieg M-A, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case–control study. J Clin Densitom 12:170–176

    Article  PubMed  Google Scholar 

  25. Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181

    Article  PubMed  Google Scholar 

  26. Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109

    Article  CAS  PubMed  Google Scholar 

  27. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone micro-architecture assessed by TBS predicts osteoporotic fractures independent of bone density: The Manitoba study. J Bone Miner Res 26:2762–2769

    Article  PubMed  Google Scholar 

  28. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY Study. Osteoporos Int 24:77–85

    Article  CAS  PubMed  Google Scholar 

  29. Bréban S, Briot K, Kolta S, Paternotte S, Ghazi M, Fechtenbaum J, Roux C (2012) Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 15:260–266

    Article  PubMed  Google Scholar 

  30. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C (2000) Follow-up of individual patients on two DXA scanners of the same manufacturer. Osteoporos Int 11:709–713

    Article  CAS  PubMed  Google Scholar 

  31. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  32. Crans GG, Genant HK, Krege JH (2005) Prognostic utility of a semiquantitative spinal deformity index. Bone 37:175–179

    Article  PubMed  Google Scholar 

  33. Howat I, Carty D, Harrison J, Fraser M, McLellan AR (2007) Vertebral fracture assessment in patients presenting with incident nonvertebral fractures. Clin Endocrinol (Oxf) 67:923–930

    Article  Google Scholar 

  34. Gonnelli S, Caffarelli C, Maggi S et al (2013) The assessment of vertebral fractures in elderly women with recent hip fractures: the BREAK Study. Osteoporos Int 24:1151–1159

    Article  CAS  PubMed  Google Scholar 

  35. van Geel TA, Huntjens KM, van den Bergh JP et al (2010) Timing of subsequent fractures after an initial fracture. Curr Osteoporos Rep 8:118–122

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Briot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassar, K., Paternotte, S., Kolta, S. et al. Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range. Osteoporos Int 25, 243–249 (2014). https://doi.org/10.1007/s00198-013-2502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2502-7

Keywords

Navigation