Skip to main content

Advertisement

Log in

Epigenetic influences in the developmental origins of osteoporosis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoporosis is a major public health problem due to consequent fragility fractures; data from the UK suggest that up to 50% of women and 20% men aged 50 years will have an osteoporosis-related fracture in their remaining lifetime. Skeletal size and density increase from early embryogenesis through intrauterine, infant, childhood and adult life to reach a peak in the third to fourth decade. The peak bone mass achieved is a strong predictor of later osteoporosis risk. Epidemiological studies have demonstrated a positive relationship between early growth and later bone mass, both at peak and in later life, and also with reduced risk of hip fracture. Mother–offspring cohorts have allowed the elucidation of some of the specific factors in early life, such as maternal body build, lifestyle and 25(OH)-vitamin D status, which might be important. Most recently, the phenomenon of developmental plasticity, whereby a single genotype may give rise to different phenotypes depending on the prevailing environment, and the science of epigenetics have presented novel molecular mechanisms which may underlie previous observations. This review will give an overview of these latter developments in the context of the burden of osteoporosis and the wider data supporting the link between the early environment and bone health in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harvey N, Dennison E, Cooper C (2008) Epidemiology of osteoporotic fracture. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASMBR, Washington, pp 198–203

    Google Scholar 

  2. Department of Health (1994) Advisory group on osteoporosis. Department of Health, London

    Google Scholar 

  3. Cooper C, Westlake S, Harvey N et al (2006) Review: developmental origins of osteoporotic fracture. Osteoporosis Int 17:337–347

    Article  Google Scholar 

  4. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporosis Int 1(1):30–34

    Article  CAS  Google Scholar 

  5. Hernandez CJ, Beaupre GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporosis Int 14(10):843–847

    Article  CAS  Google Scholar 

  6. Cooper C, Eriksson JG, Forsen T et al (2001) Maternal height, childhood growth and risk of hip fracture later in life: a longitudinal study. Osteoporosis Int 12:623–629

    Article  CAS  Google Scholar 

  7. Bateson P (2001) Fetal experience and good adult disease. Int J Epidemiol 30:928–934

    Article  PubMed  CAS  Google Scholar 

  8. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301(6761):1111

    Article  PubMed  CAS  Google Scholar 

  9. Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Invest 25(7):457–463

    Article  PubMed  CAS  Google Scholar 

  10. Gluckman PD, Hanson MA, Cooper C et al (2008) Effect of in utero and early-life conditions on adult health and disease. N Eng J Med 359(1):61–73

    Article  CAS  Google Scholar 

  11. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17–21

    Article  PubMed  CAS  Google Scholar 

  12. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57(4):582–586

    Article  PubMed  Google Scholar 

  13. Keen R, Egger P, Fall C, Major P, Lanchbury J, Spector TD, Cooper C (1997) Polymorphisms of the vitamin D receptor, infant growth and adult bone mass. Calcif Tiss Int 60:233–235

    Article  CAS  Google Scholar 

  14. Cooper C, Harvey N, Javaid K, Hanson M, Dennison E (2008) Growth and bone development. Nestle Nutr Workshop Ser Pediatr Program 61:53–68

    Article  PubMed  Google Scholar 

  15. Javaid MK, Lekamwasam S, Clark J, Dennison EM, Syddall HE, Loveridge N, Reeve J, Beck TJ, Cooper C (2006) Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res 21:508–512

    Article  PubMed  Google Scholar 

  16. Oliver H, Jameson KA, Sayer AA, Cooper C, Dennison EM (2007) Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone 41:400–405

    Article  PubMed  Google Scholar 

  17. Javaid MK, Godfrey KM, Taylor P, Robinson SM, Crozier SR, Dennison EM, Robinson JS, Breier BR, Arden NK, Cooper C (2005) Umbilical cord leptin predicts neonatal bone mass. Calcif Tissue Int 76:341–347

    Article  PubMed  CAS  Google Scholar 

  18. Harvey NC, Poole JR, Javaid MK, Dennison EM, Robinson S, Inskip HM, Godfrey KM, Cooper C, Sayer AA (2007) Parental determinants of neonatal body composition. J Clin Endocrinol Metab 92:523–526

    Article  PubMed  CAS  Google Scholar 

  19. Javaid MK, Crozier SR, Harvey NC (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367(9504):36–43

    Article  PubMed  CAS  Google Scholar 

  20. Harvey NC, Javaid MK, Poole JR et al (2008) Paternal skeletal size predicts intrauterine bone mineral accrual. J Clin Endocr Metab 93(5):1676–1681

    Article  PubMed  CAS  Google Scholar 

  21. Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A, Cooper C, Naik S, Joshi N, Lubree H, Deshpande V, Joglekar C (2006) Bone mass in Indian children. Relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 91:2994–3001

    Article  PubMed  CAS  Google Scholar 

  22. Cole ZA, Gale CR, Javaid MK, Robinson SM, Law CM, Boucher BJ, Crozier SR, Godfrey KM, Dennison EM, Cooper C (2009) Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Min Res 24(4):663–668

    Article  Google Scholar 

  23. Kanis JA, Johnell O, De Laet C et al (2002) International variations in hip fracture probabilities: implications for risk assessment. JBMR 17:1237–1244

    Article  Google Scholar 

  24. Cooper C (1993) Epidemiology and public health impact of osteoporosis. Balliere’s Clin Rheumatol 7:459–477

    Article  CAS  Google Scholar 

  25. Huncharek M, Muscat J, Kupelnick B (2008) Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43:312–321

    Article  PubMed  CAS  Google Scholar 

  26. Winzenberg T, Shaw K, Fryer J, Jones G (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ 333:775

    Article  PubMed  CAS  Google Scholar 

  27. Du XQ et al (2002) Milk consumption and bone mineral content in Chinese adolescent girls. Bone 30:521–528, JID: 8504048

    Article  PubMed  CAS  Google Scholar 

  28. Rozen GS et al (2001) Calcium intake and bone mass development among Israeli adolescent girls. J Am Coll Nutr 20:219–224, JID: 8215879

    PubMed  CAS  Google Scholar 

  29. Black RE, Williams SM, Jones IE, Goulding A (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76:675–680, JID: 0376027

    PubMed  CAS  Google Scholar 

  30. Goulding A et al (2004) Children who avoid drinking cow's milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc 104:250–253

    Article  PubMed  Google Scholar 

  31. Barr SI, Petit MA, Vigna YM, Prior JC (2001) Eating attitudes and habitual calcium intake in peripubertal girls are associated with initial bone mineral content and its change over 2 years. J Bone Miner Res 16:940–947, JID: 8610640

    Article  PubMed  CAS  Google Scholar 

  32. Bonjour JP et al (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294, JID: 7802877

    Article  PubMed  CAS  Google Scholar 

  33. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358:1208–1212, JID: 2985213R

    Article  PubMed  CAS  Google Scholar 

  34. French SA, Fulkerson JA, Story M (2000) Increasing weight-bearing physical activity and calcium intake for bone mass growth in children and adolescents: a review of interventional trials. Preventive Med 31:722–731

    Article  CAS  Google Scholar 

  35. Kalwarf HJ, Khoury JC, Lanpear BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77:257–265

    Google Scholar 

  36. Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, Robinson SM, Inskip HM, Godfrey KM, Dennison EM, Wareham N, Ekelund U, Cooper C, The SWS Study Group (2011) Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int (in press)

  37. Janz KF et al (2001) Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics 107:1387–1393, JID: 0376422

    Article  PubMed  CAS  Google Scholar 

  38. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A et al (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13(3):500–507 (JID: 8610640)

    Article  PubMed  CAS  Google Scholar 

  39. Lanham SA, Roberts C, Perry MJ, Cooper C, Oreffo RO (2008) Intrauterine programming of bone. Part 2: alteration of skeletal structure. Osteoporos Int 19:157–167

    Article  PubMed  CAS  Google Scholar 

  40. Lanham SA, Roberts C, Cooper C, Oreffo RO (2008) Intrauterine programming of bone. Part 1: alteration of the osteogenic environment. Osteoporos Int 19:147–156

    Article  PubMed  CAS  Google Scholar 

  41. Oreffo RO, Lashbrooke B, Roach HI, Clarke NM, Cooper C (2003) Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 33:100–107

    Article  PubMed  CAS  Google Scholar 

  42. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic environmental signals. Nature Genetics 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  43. Gicquel C, El-Osta A, Le Bouc Y (2008) Epigenetic regulation of fetal programming. Best Practise and Research Clinical Endocrinology & Metabolism 22(1):1–16

    Article  CAS  Google Scholar 

  44. Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. BioEssays 29:145–154

    Article  PubMed  CAS  Google Scholar 

  45. Tang W, Ho S (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182

    Article  PubMed  Google Scholar 

  46. Bird A (2001) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  Google Scholar 

  47. Kwong WY, Wild AE, Roberts P et al (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127:4195–4202

    PubMed  CAS  Google Scholar 

  48. Levitt NS, Lindsay RS, Holmes MC et al (1996) Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 64:412–418

    Article  PubMed  CAS  Google Scholar 

  49. Nyirenda MJ, Lindsay RS, Kenyon CJ et al (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    Article  PubMed  CAS  Google Scholar 

  50. Welberg LAM, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 04:71–79

    Article  Google Scholar 

  51. Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behaviour. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  52. Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    PubMed  CAS  Google Scholar 

  53. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:437–439

    Google Scholar 

  54. Pham TD, MacLennan NK, Chiu CT et al (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285:R962–R970

    PubMed  CAS  Google Scholar 

  55. Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  PubMed  CAS  Google Scholar 

  56. Grønbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. APMIS 115(10):1039–1059

    Article  PubMed  Google Scholar 

  57. Heijmans BT, Elmar WT, Stein Ad (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS 105(44):17046–17049

    Article  PubMed  CAS  Google Scholar 

  58. Namgung R, Tsang RC (2003) Bone in the pregnant mother and newborn at birth. Clin Chim Acta 333:1–11

    Article  PubMed  CAS  Google Scholar 

  59. Kimball S, El-Hajj Fuleihan G, Vieth R (2008) Vitamin D: a growing perspective. Critical Reviews in Clinical Laboratory Sciences 45(4):339–414

    Article  PubMed  CAS  Google Scholar 

  60. Martin R, Harvey NC, Crozier SR et al (2007) Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone; 40:1203–1208

    Article  PubMed  CAS  Google Scholar 

  61. Dennison E, Hindmarsh P, Fall C et al (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84(9):3058–3063

    Article  PubMed  CAS  Google Scholar 

  62. Lillycrop KA, Slater-Jefferies JL, Hanson MA et al (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97(6):1064–1073

    Google Scholar 

  63. Biniszkiewicz D, Gribnau J, Ramsahoye B et al (2002) Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mo Cell Biol 22:2124–2135

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holroyd, C., Harvey, N., Dennison, E. et al. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int 23, 401–410 (2012). https://doi.org/10.1007/s00198-011-1671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1671-5

Keywords

Navigation