Skip to main content

Advertisement

Log in

Skeletal mineralization defects in adult hypophosphatasia—a clinical and histological analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Histomorphometry and quantitative backscattered electron microscopy of iliac crest biopsies from patients with adult hypophosphatasia not only confirmed the expected enrichment of non-mineralized osteoid, but also demonstrated an altered trabecular microarchitecture, an increased number of osteoblasts, and an impaired calcium distribution within the mineralized bone matrix.

Introduction

Adult hypophosphatasia is an inherited disorder of bone metabolism caused by inactivating mutations of the ALPL gene, encoding tissue non-specific alkaline phosphatase. While it is commonly accepted that the increased fracture risk of the patients is the consequence of osteomalacia, there are only few studies describing a complete histomorphometric analysis of bone biopsies from affected individuals. Therefore, we analyzed iliac crest biopsies from eight patients and set them in direct comparison to biopsies from healthy donors or from individuals with other types of osteomalacia.

Methods

Histomorphometric analysis was performed on non-decalcified sections stained either after von Kossa/van Gieson or with toluidine blue. Bone mineral density distribution was quantified by backscattered electron microscopy.

Results

Besides the well-documented enrichment of non-mineralized bone matrix in individuals suffering from adult hypophosphatasia, our histomorphometric analysis revealed alterations of the trabecular microarchitecture and an increased number of osteoblasts compared to healthy controls or to individuals with other types of osteomalacia. Moreover, the analysis of the mineralized bone matrix revealed significantly decreased calcium content in patients with adult hypophosphatasia.

Conclusions

Taken together, our data show that adult hypophosphatasia does not solely result in an enrichment of osteoid, but also in a considerable degradation of bone quality, which might contribute to the increased fracture risk of the affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mornet E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22:113–127

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg CR, Evans JA, McKendry-Smith S, Redekopp S, Haworth JC, Mulivor R, Chodirker BN (1990) Infantile hypophosphatasia: localization within chromosome region 1p36.1-34 and prenatal diagnosis using linked DNA markers. Am J Hum Genet 46:286–292

    PubMed  CAS  Google Scholar 

  3. Henthorn PS, Raducha M, Fedde KN, Lafferty MA, Whyte MP (1992) Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci USA 89:9924–9928

    Article  PubMed  CAS  Google Scholar 

  4. Henthorn PS, Whyte MP (1992) Missense mutations of the tissue-nonspecific alkaline phosphatase gene in hypophosphatasia. Clin Chem 38:2501–2505

    PubMed  CAS  Google Scholar 

  5. Moore CA, Ward JC, Rivas ML, Magill HL, Whyte MP (1990) Infantile hypophosphatasia: autosomal recessive transmission to two related sibships. Am J Med Genet 36:15–22

    Article  PubMed  CAS  Google Scholar 

  6. Orimo H, Goseki-Sone M, Sato S, Shimada T (1997) Detection of deletion 1154–1156 hypophosphatasia mutation using TNSALP exon amplification. Genomics 42:364–366

    Article  PubMed  CAS  Google Scholar 

  7. Orimo H, Hayashi Z, Watanabe A, Hirayama T, Hirayama T, Shimada T (1994) Novel missense and frameshift mutations in the tissue-nonspecific alkaline phosphatase gene in a Japanese patient with hypophosphatasia. Hum Mol Genet 3:1683–1684

    Article  PubMed  CAS  Google Scholar 

  8. Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E (2009) Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet 10:51

    Article  PubMed  Google Scholar 

  9. Whyte MP, Wenkert D, McAlister WH, Mughal MZ, Freemont AJ, Whitehouse R, Baildam EM, Coburn SP, Ryan LM, Mumm S (2009) Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J Bone Miner Res 24:1493–1505

    Article  PubMed  Google Scholar 

  10. Whyte MP (1990) Heritable metabolic and dysplastic bone diseases. Endocrinol Metab Clin North Am 19:133–173

    PubMed  CAS  Google Scholar 

  11. Brun-Heath I, Chabrol E, Fox M, Drexler K, Petit C, Taillandier A, De Mazancourt P, Serre JL, Mornet E (2008) A case of lethal hypophosphatasia providing new insights into the perinatal benign form of hypophosphatasia and expression of the ALPL gene. Clin Genet 73:245–250

    Article  PubMed  CAS  Google Scholar 

  12. Smilari P, Romeo DM, Palazzo P, Meli C, Sorge G (2005) Neonatal hypophosphatasia and seizures. A case report. Minerva Pediatr 57:319–323

    PubMed  CAS  Google Scholar 

  13. Whyte MP (1995) Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 4095–4112

    Google Scholar 

  14. Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    PubMed  CAS  Google Scholar 

  15. Coe JD, Murphy WA, Whyte MP (1986) Management of femoral fractures and pseudofractures in adult hypophosphatasia. J Bone Joint Surg Am 68:981–990

    PubMed  CAS  Google Scholar 

  16. Barvencik F, Gebauer M, Schinke T, Amling M (2008) Case report: multiple fractures in a patient with mutations of TWIST1 and TNSALP. Clin Orthop Relat Res 466:990–996

    Article  PubMed  Google Scholar 

  17. Reibel A, Maniere MC, Clauss F, Droz D, Alembik Y, Mornet E, Bloch-Zupan A (2009) Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis 4:6

    Article  PubMed  Google Scholar 

  18. Whyte MP (2009) Atypical femoral fractures, bisphosphonates, and adult hypophosphatasia. J Bone Miner Res 24:1132–1134

    Article  PubMed  Google Scholar 

  19. Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2:40

    Article  PubMed  Google Scholar 

  20. Mornet E (2010) The tissue nonspecific alkaline phosphatase gene mutations database. At http://www.sesep.uvsq.fr/03_hypo_mutations.php. Accessed 12 August 2010

  21. Fallon MD, Teitelbaum SL, Weinstein RS, Goldfischer S, Brown DM, Whyte MP (1984) Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms. Medicine (Baltimore) 63:12–24

    CAS  Google Scholar 

  22. Ramage IJ, Howatson AJ, Beattie TJ (1996) Hypophosphatasia. J Clin Pathol 49:682–684

    Article  PubMed  CAS  Google Scholar 

  23. Ornoy A, Adomian GE, Rimoin DL (1985) Histologic and ultrastructural studies on the mineralization process in hypophosphatasia. Am J Med Genet 22:743–758

    Article  PubMed  CAS  Google Scholar 

  24. Wolff C, Zabransky S (1982) Hypophosphatasia congenita letalis. Eur J Pediatr 138:197–199

    Article  PubMed  CAS  Google Scholar 

  25. Anderson HC, Hsu HH, Morris DC, Fedde KN, Whyte MP (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561

    PubMed  CAS  Google Scholar 

  26. Whyte MP (2002) Hypophosphatasia. In: Bilezikian JP, Raisz LG, Roda GA (eds) Principles of bone biology, 2nd edn. Academic, San Diego, pp 1129–1248

    Google Scholar 

  27. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  28. Bordier P (1972) Quantitative histology of metabolic bone disease. J Clin Endocrinol Metab 1:197–215

    Article  Google Scholar 

  29. Amling M, Hahn M, Wening VJ, Grote HJ, Delling G (1994) The microarchitecture of the axis as the predisposing factor for fracture of the base of the odontoid process. A histomorphometric analysis of twenty-two autopsy specimens. J Bone Joint Surg Am 76:1840–1846

    PubMed  CAS  Google Scholar 

  30. Amling M, Grote HJ, Posl M, Hahn M, Delling G (1994) Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology. Bone Miner 27:193–208

    Article  PubMed  CAS  Google Scholar 

  31. Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11:36–45

    Article  PubMed  CAS  Google Scholar 

  32. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    Article  PubMed  CAS  Google Scholar 

  33. Jones SJ, Glorieux FH, Travers R, Boyde A (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17

    Article  PubMed  CAS  Google Scholar 

  34. Roschger P, Plenk HJ, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scan Microsc 9:75–86

    CAS  Google Scholar 

  35. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  PubMed  CAS  Google Scholar 

  36. Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B (1993) Influence of mineral content and composition on graylevels in backscattered electron images of bone. J Biomed Mater Res 27:57–64

    Article  PubMed  CAS  Google Scholar 

  37. Boyde A, Maconnachie E, Reid SA, Delling G, Mundy GR (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc 1537–1554

  38. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  PubMed  CAS  Google Scholar 

  39. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  CAS  Google Scholar 

  40. Balena R, Shih MS, Parfitt AM (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482

    Article  PubMed  CAS  Google Scholar 

  41. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Püschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312

    Article  PubMed  CAS  Google Scholar 

  42. Liberman UA (2007) Vitamin D-resistant diseases. J Bone Miner Res Suppl 2:105–107

    Article  Google Scholar 

  43. Koren R (2006) Vitamin D receptor defects: the story of hereditary resistance to vitamin D. Pediatr Endocrinol Rev Suppl 3:470–475

    Google Scholar 

  44. Beck-Nielsen SS, Brusgaard K, Rasmussen LM, Brixen K, Brock-Jacobsen B, Poulsen MR, Vestergaard P, Ralston SH, Albagha OM, Poulsen S, Haubek D, Gjørup H, Hintze H, Andersen MG, Heickendorff L, Hjelmborg J, Gram J (2010) Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int 87:108–119

    Article  PubMed  CAS  Google Scholar 

  45. Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ (2010) Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab 95:1846–1850

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Olga Winter for excellent technical assistance in preparing the samples for qualitative and quantitative histomorphometry.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amling.

Additional information

Florian Barvencik and Frank Timo Beil contributed equally to this work and therefore share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barvencik, F., Beil, F.T., Gebauer, M. et al. Skeletal mineralization defects in adult hypophosphatasia—a clinical and histological analysis. Osteoporos Int 22, 2667–2675 (2011). https://doi.org/10.1007/s00198-011-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1528-y

Keywords

Navigation