, Volume 20, Issue 3, pp 455-461
Date: 19 Jun 2008

Generation of a 3D proximal femur shape from a single projection 2D radiographic image

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Summary

Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections.

Introduction

Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone.

Methods

Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts.

Results

The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections.

Conclusions

This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.