Skip to main content
Log in

Forensische Molekularpathologie

Molecular pathology in forensic medicine

  • CME Zertifizierte Fortbildung
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Molekularbiologische Techniken haben die diagnostische Sensitivität und Validität in der forensischen Medizin insbesondere auf dem Gebiet der Identifizierung maßgeblich gesteigert. Seit ca. 15 Jahren werden diese Techniken wie in vielen klinischen Disziplinen auch für andere Fragestellungen herangezogen: Feststellung von Todesursache und Todesart, Gewebeidentifizierung, Untersuchung des Genexpressionsniveaus (Überlebenszeit, Todeszeit, Todesursache), Toxikogenetik und Identifikation von Mutationen mit Krankheitswert. Der Einsatz molekularpathologischer Techniken wird beispielhaft und mit besonderer Berücksichtigung der Diagnostik primärer Arrhythmiesyndrome als Ursache des plötzlichen Herztodes dargestellt.

Abstract

Techniques of molecular biology have greatly improved the diagnostic sensitivity, accuracy and validity in forensic medicine, especially in the field of identification; however, these techniques have been used for more than 15 years in clinical disciplines regarding other applications, such as determination of the cause and manner of death, tissue identification, determination of gene expression levels (e.g. survival time, time since death and cause of death), toxicogenetics and identification of mutations in diseases. Several applications of forensic molecular pathology in forensic medicine are addressed with special emphasis on the detection of primary arrhythmia as the cause of sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ackermann MJ, Tester DJ, Porter CJ, Edwards WD (1999) Molecular diagnosis of the inherited long-QT syndrome in a woman who died after near-drowning. N Engl J Med 341:1121–1125

    Google Scholar 

  2. Ackermann MJ, Siu BL, Sturner WQ et al (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286:264–269

    Google Scholar 

  3. Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8:1308–1339

    PubMed  Google Scholar 

  4. Tester DJ, Ackermann MJ (2005) Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res 37:388–396

    Google Scholar 

  5. Tester DJ, Ackermann MJ (2006) The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol 21:166–172

    PubMed  Google Scholar 

  6. Tester DJ, Ackermann MJ (2007) Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol 49(2):240–246

    PubMed  Google Scholar 

  7. Tester DJ, Dura M, Carturan E et al (2007) A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 4:733–739

    PubMed Central  PubMed  Google Scholar 

  8. Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123:1021–1037

    PubMed Central  PubMed  Google Scholar 

  9. Tester D, Medeiros-Domingo A, Will M et al (2011) The cardiac channel molecular autopsy for structurally normal heart sudden unexplained death. Circulation 124:A17278

    Google Scholar 

  10. Tester DJ, Ackerman MJ (2012) The molecular autopsy: should the evaluation continue after the funeral? Pediatr Cardiol 33:461–470

    PubMed Central  PubMed  Google Scholar 

  11. Tester D, Medeiros-Domingo A, Will M et al (2012) Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc 87:524–539

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Blakey G, Farkass D (2009) General approach to molecular pathology. In: Cagle PT, Alan TC (Hrsg) Basic concepts of molecular pathology. Molecular pathology library 2. Springer, Berlin Heidelberg New York Tokio, S 61–68

  13. Cagle PT, Alan TC (Hrsg) (2009) Basic concepts of molecular pathology. Molecular pathology library 2. Springer, Berlin Heidelberg New York Tokio

  14. Hund JL, Dacic S (2009) Applications in anatomic pathology. In: Cagle PT, Alan TC (Hrsg) Basic concepts of molecular pathology. Molecular pathology library 2. Springer, Berlin Heidelberg New York Tokio, S 69–72

  15. Leonard DG (2009) Molecular pathology in clinical practice: genetics. Springer, Berlin Heidelberg New York Tokio

  16. Madea B, Saukko P, Oliva A, Musshoff F (2010) Molecular pathology in forensic medicine – introduction. Forensic Sci Int 203:3–14

    CAS  PubMed  Google Scholar 

  17. Madea B, Saukko P (2010) Preface to the special issue molecular pathology in forensic medicine. Forensic Sci Int 203:1–10

    PubMed  Google Scholar 

  18. Smith-Zagone MJ, Pulliam JF, Farkass DH (2009) Molecular pathology methods. In: Leonard DG (Hrsg) Molecular pathology in clinical practice: genetics. S 15–39

  19. Wong SHY, Linder MW, Valdes R (2006) Pharmacogenomics and proteomics. Enabling the practice of personalized medicine. AACC Press, Washington DC

  20. Junge A, Dettmeyer R, Madea B (2008) Identification of biological samples in a case of contamination of a cytological slide preparation. J Forensic Sci 53(3):739–741

    PubMed  Google Scholar 

  21. Junge A, Steevens M, Madea B (2001) Successful DNA typing of an urine sample in a doping control case using human mitochondrial DNA analysis. J Forensic Sci 47:5–13

    Google Scholar 

  22. Schmitt C, Madea B, Prinz M (1995) Leichenzerstückelung mit sequenzieller Auffindung und Zuordnung der Leichenteile. Arch Kriminol 196:129–137

    CAS  PubMed  Google Scholar 

  23. Baasner A, Dettmeyer R, Graebe M et al (2003) PCR-based diagnosis of enterovirus and parvovirus B19 in paraffin-embedded heart tissue of children with suspected sudden infant death syndrome (SIDS). Lab Invest 83:1451–1455

    CAS  PubMed  Google Scholar 

  24. Basso C, Calabrese F, Corrado D, Thiene G (2001) Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res 50:290–300

    CAS  PubMed  Google Scholar 

  25. Basso C, Burke M, Fornes P et al (2008) Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch 452:11–18

    PubMed  Google Scholar 

  26. Behr ER, Dalageorgou C, Christiansen M et al (2008) Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur Heart J 29:1670–1680

    PubMed  Google Scholar 

  27. Bríon M, Allegue C, Gil R et al (2009) Involvement of hypertrophic cardiomyopathy genes in sudden infant death syndrome (SIDS). Forensic Sci Int 2:495–496

    Google Scholar 

  28. Brugada R (2010) Clinical approach to sudden cardiac death syndrome. Springer, London

  29. Calabrese F, Thiene G (2003) Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res 60:11–25

    CAS  PubMed  Google Scholar 

  30. Carturan E, Tester DJ, Brost BC et al (2008) Postmortem genetic testing for conventional autopsy-negative sudden unexplained death. Am J Clin Pathol 129:391–397

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Chugh SS, Senashova O, Watts A et al (2004) Postmortem molecular screening in unexplained sudden death. J Am Coll Cardiol 43:1625–1629

    CAS  PubMed  Google Scholar 

  32. Ingles J, Semsarian C (2007) Sudden cardiac death in the young: a clinical genetic approach. Intern Med J 37:32–37

    CAS  PubMed  Google Scholar 

  33. Oliva A, Brugada R, D’Aloja E et al (2010) State of the art in forensic investigation of sudden cardiac death (SCD). Am J Forensic Med Pathol 32(1):1–16

    Google Scholar 

  34. Oliva A, Pascali V (2010) Sudden cardiac death in forensic pathology. In: Brugada R (Hrsg) Clinical approach to sudden cardiac death syndrome. Springer, London, S 91–110

  35. Rodríguez-Calvo M, Brion M, Aleegue C et al (2008) Molecular genetics of sudden cardiac death. Forensic Sci Int 182:1–12

    PubMed  Google Scholar 

  36. Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103

    CAS  PubMed  Google Scholar 

  37. Bauer M, Polzin S, Gramlich I, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval – a pilot study. Leg Med 5:220–227

    CAS  Google Scholar 

  38. Bauer M, Patzelt D (2002) Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci 47:1278–1283

    CAS  PubMed  Google Scholar 

  39. Bauer M, Thalheimer A, Patzelt D (2002) Paternity testing after pregnancy termination using laser microdissection of chorionic villi. Int J Legal Med 116:39–42

    PubMed  Google Scholar 

  40. Bauer M, Patzelt D (2003) Protamine mRNA as molecular marker for spermatozoa in forensic stains. Int J Legal Med 117:175–179

    CAS  PubMed  Google Scholar 

  41. Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:69–74

    CAS  PubMed  Google Scholar 

  42. Courts C, Madea B (2011) Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci 56:1464–1470

    CAS  PubMed  Google Scholar 

  43. Courts C, Madea B (2012) Ribonukleinsäure – Bedeutung in der forensischen Molekularbiologie. Rechtsmedizin 22:135–144

    Google Scholar 

  44. Zhu B-L, Tanaka S, Ishikawa T et al (2008) Forensic pathological investigation of myocardial hypoxia-inducible factor-1α, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med 10:11–19

    CAS  Google Scholar 

  45. Zitron E, Scholz EP, Kiesecker C et al (2005) Molecular basis of primary electrical heart diseases. Herzschrittmacherther Elektrophysiol 16:229–238

    CAS  PubMed  Google Scholar 

  46. Zubakov D, Boersma AW, Choi Y et al (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226

    PubMed Central  PubMed  Google Scholar 

  47. He YJ, Brockmöller J, Schmidt H et al (2008) CYP2D6 ultrarapid metabolism and morphine/codeine ratios in blood: was it codeine or heroin? J Anal Toxicol 32:178–182

    CAS  PubMed  Google Scholar 

  48. Holmgren P, Ahlner J (2006) Pharmacogenomics for forensic toxicology: Swedish experience. In: Wong SHY, Linder MW, Valdes R (Hrsg) Pharmacogenomics and proteomics. Enabling the practice of personalized medicine. AACC Press, S 295–300

  49. Jannetto PJ, Wong SH, Gock SB et al (2002) Pharmacogenomics as molecular autopsy for postmortem forensic toxicology: genotyping cytochrome P450 2D6 for oxycodone cases. J Anal Toxicol 26:438–447

    CAS  PubMed  Google Scholar 

  50. Jin M, Gock SB, Jannetto PJ et al (2005) Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome 450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol 29:590–598

    CAS  PubMed  Google Scholar 

  51. Koski A, Ojanperä I, Sistonen J et al (2007) A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol 28:259–261

    PubMed  Google Scholar 

  52. Koski A, Sistonen J, Ojanperä I et al (2006) CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int 158:177–183

    CAS  PubMed  Google Scholar 

  53. Levo A, Koski A, Ojanperä I et al (2003) Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 135:9–15

    CAS  PubMed  Google Scholar 

  54. Musshoff F, Madea B, Stüber F, Stamer U (2008) Plasma levels of tramadol and o-desmethyltramadol-enantiomers in patients with different CYP2D6 genotypes. In: Pragst F, Aderjan R (Hrsg) GTFCh Symposium 2007, aktuelle Beiträge zur forensischen und klinischen Toxikologie. Fahreignung – K.-o.-Mittel – Toxikokinetic – Analytische Methoden. Bad Vilbl, S 156–161

  55. Musshoff F, Stamer UM, Madea B (2010) Pharmacogenetics and forensic toxicology. Forensic Sci Int 203:53–62

    CAS  PubMed  Google Scholar 

  56. Sajantila A, Lunetta P, Ojanperä I (2006) Postmortem pharmacogenetics: toward molecular autopsies. In: Wong SHY, Linder MW, Valdes R (Hrsg) Pharmacogenomics and proteomics. Enabling the practice of personalized medicine. AACC Press, S 301–310

  57. Sajantila A, Palo JU, Ojanpera I et al (2010) Pharmacogenetics in medico-legal context. Forensic Sci Int 203:44–52

    CAS  PubMed  Google Scholar 

  58. Stamer UM, Mußhoff F, Kobilay M et al (2007) Concentrations of tramadol and o-desmethyltramadol-enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82(1):41–47

    CAS  PubMed  Google Scholar 

  59. Wong SH, Gock SB, Run-Zhang S et al (2006) Pharmacogenomics as an aspect of molecular autopsy for forensic pathology/toxicology. In: Wong SHY, Linder MW, Valdes R (Hrsg) Pharmacogenomics and proteomics. Enabling the practice of personalized medicine. AACC Press, S 311–318

  60. Madea B (2014) Die Ärztliche Leichenschau – Rechtsgrundlagen, praktische Durchführung, Problemlösungen, 3. Aufl. Springer, Berlin Heidelberg New York Tokio

  61. Ikematsu K, Tsuda R, Nakasono I (2006) Gene response of mouse skin to pressure injury in the neck region. Leg Med 8:128–131

    CAS  Google Scholar 

  62. Ikematsu K, Tsuda R, Tsuruya S, Nakasono I (2007) Identification of novel genes expressed in hypoxic brain condition by fluorescence differential display. Forensic Sci Int 169:168–172

    CAS  PubMed  Google Scholar 

  63. Ikematsu K, Takahashi H, Kondo T et al (2008) Temporal expression of immediate early gene mRNA during the supravital reaction in mouse brain and lung after mechanical asphyxiation. Forensic Sci Int 179:152–156

    CAS  PubMed  Google Scholar 

  64. Ishida K, Zhu B-L, Maeda H (2000) Novel approach to quantitative reverse transcription PCR assay of mRNA component in autopsy material using the TaqMan fluorogenic detection system: dynamics of pulmonary surfactant apoprotein A. Forensic Sci Int 113:127–131

    CAS  PubMed  Google Scholar 

  65. Ishida K, Zhu B-L, Maeda H (2002) A quantitative RT-PCR assay of surfactant-associated protein A1 and A 2 mRNA transcripts as a diagnostic tool for acute asphyxial death. Leg Med 4:7–12

    CAS  Google Scholar 

  66. Reibe S, Schmidt J, Madea B (2009) Molecular identification of forensically important blowfly species (Diptera: Calliphoridae) from Germany. Parasitol Res 106(1):257–261

    PubMed  Google Scholar 

  67. Zhao D, Zhu B-L, Ishikawa T et al (2006) Quantitative RT-PCR assays of hypoxia-inducible factor-1α, erythropoietin and vascular endothelial growth factor mRNA transcripts in the kidneys with regard to the cause of death in medicolegal autopsy. Leg Med 8:258–263

    CAS  Google Scholar 

  68. Zhao D, Ishikawa T, Quan L et al (2008) Tissue-specific differences in mRNA quantification of glucose transporter 1 and vascular endothelial growth factor with special regard to death investigations of fatal injuries. Forensic Sci Int 177:176–183

    CAS  PubMed  Google Scholar 

  69. Zhao D, Ishikawa T, Quan L et al (2009) Postmortem quantitative mRNA analyses of death investigation in forensic pathology: an overview and prospects. Leg Med (Tokyo) 11(Suppl 1):43–45

    Google Scholar 

  70. Madea B (2009) Sudden death, especially in infancy – improvement of diagnosis by biochemistry, immunohistochemistry and molecular pathology. Leg Med 11:S36–S42

    Google Scholar 

  71. Madea B, Drexler J (2011) Virusätiologie des Sudden Infant Death Syndrome. In: Darai G, Handermann M, Sonntag HG, Tidona CA, Zöller L (Hrsg) Lexikon der Infektionskrankheiten des Menschen – Erreger, Symptome, Diagnose, Therapie und Prophylaxe, 4. Aufl. Springer, Berlin Heidelberg New York Tokio, S 931–962

  72. Maher BS, Marazita ML, Rand C et al (2006) 3’UTR polymorphism of the serotonin transporter gene and sudden infant death syndrome: haplotype analysis. Am J Med Genet A 140:1453–1457

    PubMed  Google Scholar 

  73. Millat G, Kugener B, Chevalier P et al (2009) Contribution of long-QT syndrome genetic variants in sudden infant death syndrome. Pediatr Cardiol 30:502–509

    PubMed  Google Scholar 

  74. Modell SM, Lehmann MH (2006) The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med 8:143–155

    CAS  PubMed  Google Scholar 

  75. Moscovis SM, Gordon AE, Al Madani OM et al (2004) Interleukin-10 and sudden infant death syndrome. FEMS Immunol Med Microbiol 42:130–138

    CAS  PubMed  Google Scholar 

  76. Moscovis SM, Gordon AE, Al Madani OM et al (2006) IL6 G-174C associated with sudden infant death syndrome in a Caucasian Australian cohort. Hum Immunol 67:819–825

    CAS  PubMed  Google Scholar 

  77. Narita N, Narita M, Takashima S et al (2001) Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics 107:690–692

    CAS  PubMed  Google Scholar 

  78. Nelson DR, Zeldin DC, Hoffman SM et al (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18

    CAS  PubMed  Google Scholar 

  79. Nonnis-Marzano F, Maldini M, Filonzi L et al (2008) Genes regulating the serotonin metabolic pathway in the brain stem and their role in the etiopathogenesis of the sudden infant death syndrome. Genomics 91:485–491

    CAS  PubMed  Google Scholar 

  80. Odriozola A, Riancho JA, Vega R de la et al (2013) miRNA analysis in vitreous humor to determine the time of death: a proof-of-concept pilot study. Int J Legal Med 127:573–578

    PubMed  Google Scholar 

  81. Oehmichen M, Zilles K (1984) Postmortem DNA and RNA synthesis. Preliminary studies in human cadavers. Z Rechtsmed 91:287–294

    CAS  PubMed  Google Scholar 

  82. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med 111:251–255

    CAS  PubMed  Google Scholar 

  83. Otagiri T, Kijima K, Osawa M et al (2008) Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr Res 64:482–487

    CAS  PubMed  Google Scholar 

  84. Opdal SH, Vege A, Saugstad OD, Rognum TO (1994) Is partial deletion of the complement C4 genes associated with sudden infant death? Eur J Pediatr 153:287–290

    CAS  PubMed  Google Scholar 

  85. Opdal SH, Rognum TO, Vege A et al (1998) Increased number of substitutions in the D-loop of mitochondrial DNA in the sudden infant death syndrome. Acta Paediatr 87:1039–1044

    CAS  PubMed  Google Scholar 

  86. Odal SH, Rognum TO, Torgersen H, Vege A (1999) Mitochondrial DNA point mutations detected in four cases of sudden infant death syndrome. Acta Paediatr 88:957–960

    Google Scholar 

  87. Odal SH, Vege A, Stave AK, Rognum TO (1999) The complement component C4 in sudden infant death. Eur J Pediatr 158:210–212

    Google Scholar 

  88. Odal SH, Vege A, Egeland T et al (2002) Possible role of mtDNA mutations in sudden infant death. Pediatr Neurol 27:23–29

    Google Scholar 

  89. Odal SH, Opstad A, Vege A, Rognum TO (2003) IL-10 gene polymorphisms are associated with infectious cause of sudden infant death. Hum Immunol 64:1183–1189

    Google Scholar 

  90. Odal SH, Rognum TO (2007) The IL6-174G/C polymorphism and sudden infant death syndrome. Hum Immunol 68:541–543

    Google Scholar 

  91. Odal SH, Vege A, Rognum TO (2008) Serotonin transporter gene variation in sudden infant death syndrome. Acta Paediatr 97:861–865

    Google Scholar 

  92. Opdal SH, Rognum TO (2011) Gene variants predisposing to SIDS: current knowledge. Forensic Sci Med Pathol 7:26–36

    PubMed  Google Scholar 

  93. Park SM, Park SY, Kim JH et al (2013) Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification. Forensic Sci Int Genet 7:143–150

    CAS  PubMed  Google Scholar 

  94. Paterson DS, Rivera KD, Broadbelt KG et al (2010) Lack of association of the serotonin transporter polymorphism with the sudden infant death syndrome in the San Diego Dataset. Pediatr Res 68:409–413

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Perskvist N, Skoglund K, Edston E et al (2008) TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death. Fetal Pediatr Pathol 27:149–165

    CAS  PubMed  Google Scholar 

  96. Phang TW, Shi CY, Chia JN, Ong CN (1994) Amplification of cDNA via RT-PCR using RNA extracted from postmortem tissues. J Forensic Sci 39:1275–1279

    CAS  PubMed  Google Scholar 

  97. Plant LD, Bowers PN, Liu Q et al (2006) A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest 116:430–435

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Priori SG, Schwartz PJ, Napolitano C et al (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348:1866–1874

    PubMed  Google Scholar 

  99. Robb L (2010) Genetic counselling in cardiovascular conditions. In: Brugada R (Hrsg) Clinical approach to sudden cardiac death syndrome. Springer, London, S 327–335

  100. Rognum TO, Arnestad M, Bajanowski T et al (2003) Consensus on diagnostic criteria for the exclusion of SIDS. Nordisk Rettsmedisin 3(4):49–88

    Google Scholar 

  101. Sato Y, Ohshima T (2000) The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145

    CAS  PubMed  Google Scholar 

  102. Sauer E, Madea B, Courts C (2014) An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensically relevant body fluids. Forensic Sci Int Genet 11:174–181

    CAS  PubMed  Google Scholar 

  103. Schimpf R, Yen K, Borggrefe M (2012) Herzschr Elektrophys 23:149–160

  104. Schneider PM, Wendler C, Riepert T et al (1989) Possible association of sudden infant death with partial complement C4 deficiency revealed by post-mortem DNA typing of HLA class II and III genes. Eur J Pediatr 149:170–174

    CAS  PubMed  Google Scholar 

  105. Schwartz PJ, Priori SG, Dumaine R et al (2000) A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med 343:262–267

    CAS  PubMed  Google Scholar 

  106. Schwartz PJ, Stramba-Badiale M, Crotti L et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767

    PubMed Central  PubMed  Google Scholar 

  107. Shojania KG, Burton EC, McDonald KM, Goldman L (2003) Changes in rates of autopsy detected diagnostic errors over time. A systematic review. JAMA 289:2849–2856

    PubMed  Google Scholar 

  108. Byard R, Krous F (2001) Sudden infant death syndrome: problems, progress and possibilities. Hodder Arnold, London

  109. Byard RW (2011) Sudden infant death syndrome. In: Byard RW (Hrsg) Sudden death in the young, 3. Aufl. Cambridge University Press, Cambridge, S 555–630

  110. Kytö V, Saraste A, Saukko P et al (2004) Apoptotic cardiomyocyte death in fatal myocarditis. Am J Cardiol 94:746–750

    PubMed  Google Scholar 

  111. Kytö V, Vuorinen T, Saukko P et al (2005) Cytomegalovirus infection of the heart is common in patients with fatal myocarditis. Clin Infect Dis 40:683–688

    PubMed  Google Scholar 

  112. Kytö V, Saukko P, Lignitz E et al (2005) Diagnosis and presentation of fatal myocarditis. Hum Pathol 36:1003–1007

    PubMed  Google Scholar 

  113. Krous HF, Ferandos C, Masoumi H et al (2009) Myocardial inflammation, cellular death, and viral detection in sudden infant death caused by SIDS, suffocation or myocarditis. Pediatr Res 66(1):17–21

    PubMed  Google Scholar 

  114. Koren G, Cairns J, Chitayat D et al (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368:704

    PubMed  Google Scholar 

  115. Krous HF, Beckwith JB, Byard RW et al (2004) Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 114:234–238

    PubMed  Google Scholar 

  116. Filiano JJ, Kinney HC (1994) A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate 65:194–197

    CAS  PubMed  Google Scholar 

  117. Eminoglu TF, Tumer L, Okur I et al (2011) Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide. Forensic Sci Int 210:e1–e3

    CAS  PubMed  Google Scholar 

  118. Courts C (2013) Molecular genetics of sudden infant death syndrome. Wiley, Chichester

  119. Courts C, Madea B (2010) Genetics of the sudden infant death syndrome. Forensic Sci Int 203:25–33

    CAS  PubMed  Google Scholar 

  120. Weese-Mayer DE, Berry-Kravis EM, Maher BS et al (2003) Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene. Am J Med Genet A 117A:268–274

    PubMed  Google Scholar 

  121. Lavezzi AM, Casale V, Oneda R et al (2009) Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphe nuclei and serotonin transporter gene promoter polymorphism. Pediatr Res 66:22–27

    CAS  PubMed  Google Scholar 

  122. Haas C, Braun J, Bar W, Bartsch C (2009) No association of serotonin transporter gene variation with sudden infant death syndrome (SIDS) in Caucasians. Leg Med (Tokyo) 11(Suppl 1):S210–S212

    Google Scholar 

  123. Weese-Mayer DE, Zhou L, Berry-Kravis EM et al (2003) Association of the serotonin transporter gene with sudden infant death syndrome: a haplotype analysis. Am J Med Genet A 122A:238–245

    PubMed  Google Scholar 

  124. Filonzi L, Magnani C, Lavezzi AM et al (2009) Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis. Neurogenetics 10:65–72

    CAS  PubMed  Google Scholar 

  125. Filonzi L, Magnani C, Nonnis-Marzano F (2011) Confirmed association between monoamine oxidase A molecular polymorphisms and Sudden Infant Death Syndrome. Neurogenetics 12:91–92

    PubMed  Google Scholar 

  126. Klintschar M, Heimbold C (2010) Questionable association between a monoamine oxidase A promoter polymorphism and sudden infant death syndrome. Neurogenetics 11:367–368

    PubMed Central  PubMed  Google Scholar 

  127. Klintschar M, Heimbold C (2012) Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome. Pediatrics 129:e756–e761

    PubMed  Google Scholar 

  128. Courts C, Madea B (2011) Significant association of TH01 allele 9.3 and SIDS. J Forensic Sci 56:415–417

    CAS  PubMed  Google Scholar 

  129. Klintschar M, Reichenpfader B, Saternus KS (2008) A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome. J Pediatr 153:190–193

    CAS  PubMed  Google Scholar 

  130. Arnestad M, Crotti L, Rognum TO et al (2007) Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 115:361–367

    PubMed  Google Scholar 

  131. Wedekind W, Bajanowski T, Friederich P et al (2006) Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med 120:129–137

    PubMed  Google Scholar 

  132. Cronk LB, Ye B, Kaku T et al (2007) Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 4:161–166

    PubMed Central  PubMed  Google Scholar 

  133. Keller E, Andreas A, Teifel-Greding J et al (1990) DNA analysis of HLA class II and III genes in sudden infant death (SIDS). Beitr Gerichtl Med 48:285–290

    CAS  PubMed  Google Scholar 

  134. Korachi M, Pravica V, Barson AJ et al (2004) Interleukin 10 genotype as a risk factor for sudden infant death syndrome: determination of IL-10 genotype from wax-embedded postmortem samples. FEMS Immunol Med Microbiol 42:125–129

    CAS  PubMed  Google Scholar 

  135. Summers AM, Summers CW, Drucker DB et al (2000) Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol 61:1270–1273

    CAS  PubMed  Google Scholar 

  136. Courts C, Madea B (2011) No association of IL-10 promoter SNP -592 and -1082 and SIDS. Forensic Sci Int 204:179–181

    CAS  PubMed  Google Scholar 

  137. Dashash M, Pravica V, Hutchinson IV et al (2006) Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms. Hum Immunol 67:627–633

    CAS  PubMed  Google Scholar 

  138. Hofmann S, Jaksch M, Bezold R et al (1997) Population genetics and disease susceptibility: characterization of central European haplogroups by mtDNA gene mutations, correlation with D loop variants and association with disease. Hum Mol Genet 6(11):1835–1846

    CAS  PubMed  Google Scholar 

  139. Andreasen C, Refsgaard L, Nielsen JB et al (2013) Mutations in genes encoding cardiac ion channels previously associated with sudden infant death syndrome (SIDS) are present with high frequency in new exome data. Can J Cardiol 29:1104–1109

    PubMed  Google Scholar 

  140. Courts C, Grabmuller M, Madea B (2013) Monoamine oxidase A gene polymorphism and the pathogenesis of sudden infant death syndrome. J Pediatr 163(1):89–93

    CAS  PubMed  Google Scholar 

  141. Gross M, Bajanowski T, Vennemann M, Poetsch M (2014) Sudden infant death syndrome (SIDS) and polymorphisms in Monoamine oxidase A gene (MAOA): a revisit. Int J Legal Med 128(1):43–49

    PubMed  Google Scholar 

  142. Bosch JR ten, Grody WW (2008) Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 10:484–492

    PubMed Central  PubMed  Google Scholar 

  143. Human Cytochrome P450 (CYP) Allele nomenclature database. http://www cypalleles ki se/2014. http://www.cypalleles.ki.se/

  144. Wrighton SA, Stevens JC (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22:1–21

    CAS  PubMed  Google Scholar 

  145. Gamage N, Barnett A, Hempel N et al (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    CAS  PubMed  Google Scholar 

  146. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    CAS  PubMed  Google Scholar 

  147. Levy GN, Weber WW (2002) Arylamine acetyltransferases. In: Ioannides C (Hrsg) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York, S 441–457

  148. Bock KW (2002) UDP-Glucoronosyltransferases. In: Ioannides C (Hrsg) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York, S 281–318

  149. Druid H, Holmgren P, Carlsson B, Ahlner J (1999) Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int 99:25–34

    CAS  PubMed  Google Scholar 

  150. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    CAS  PubMed  Google Scholar 

  151. Kimura A, Ishida Y, Hayashi T et al (2011) Estimating time of death based on the biological clock. Int J Legal Med 125:385–391

    PubMed  Google Scholar 

  152. Young ST, Wells JD, Hobbs GR, Bishop CP (2013) Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int 229:163–166

    PubMed  Google Scholar 

  153. Sun JH, Nan LH, Gao CR, Wang YY (2012) Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. Int J Legal Med 126:113–120

    PubMed  Google Scholar 

  154. Takamiya M, Saigusa K, Nakayashiki N, Aoki Y (2003) Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Legal Med 117:46–50

    PubMed  Google Scholar 

  155. Takamiya M, Saigusa K, Kumagai R et al (2005) Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation. Int J Legal Med 119:16–21

    PubMed  Google Scholar 

  156. Anderson SE, Hobbs GR, Bishop CP (2011) Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 56:186–193

    CAS  PubMed  Google Scholar 

  157. o A (2004) A-Z of quantitative PCR, 1. Aufl. International University Line, La Jolla

  158. Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML (2004) Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59:566–573

    CAS  PubMed  Google Scholar 

  159. Becker J, Schmidt P, Mußhoff F et al (2004) MOR1 receptor mRNA expression in human brains of drug related fatalities – a real-time PCR quantification. Forensic Sci Int 140:13–20

    CAS  PubMed  Google Scholar 

  160. Beery TA, Shah MJ, Benson DW (2009) Genetic characterization of familial CPVT after 30 years. Biol Res Nurs 11:66–72

    CAS  PubMed  Google Scholar 

  161. Bond EF (2000) Channelopathies potassium-related periodic paralyses and similar disorders. AACN Clin Issues 11:261–270

    CAS  PubMed  Google Scholar 

  162. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    CAS  PubMed  Google Scholar 

  163. Chugh SS, Jui J, Gunson K et al (2004) Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol 44:1268–1275

    PubMed  Google Scholar 

  164. Courts C, Grabmuller M, Madea B (2013) Dysregulation of heart and brain specific micro-RNA in sudden infant death syndrome. Forensic Sci Int 228:70–74

    CAS  PubMed  Google Scholar 

  165. Corrado D, Basso C, Thiene G (2001) Sudden cardiac death in young people with apparently normal heart. Cardiovasc Res 50:399–408

    CAS  PubMed  Google Scholar 

  166. Creighton W, Virmani R, Kutys R et al (2006) Identification of novel missense mutation of cardiac ryanodine receptor gene in exercise-induced sudden death at autopsy. J Mol Diagn 8:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Davies NP, Hanna MG (2001) The skeletal muscle channelopathies: basic science, clinical genetics and treatment. Curr Opin Neurol 14:539–551

    CAS  PubMed  Google Scholar 

  168. Di Paolo M, Luchini D, Bloise R et al (2004) Postmortem molecular analysis in victims of sudden unexplained death. Am J Forensic Med Pathol 25:182–184

    Google Scholar 

  169. Eckardt L, Haverkamp W (2007) Ionenkanalerkrankungen: vom EKG bis zur genetischen Diagnostik: Wie weit muss man gehen? Kardiologe 1:283–296

    Google Scholar 

  170. Gauvin J, Zubakov D, Rhee-Binkhorst J van et al (2010) Forensic pregnancy diagnostics with placental mRNA markers. Int J Legal Med 124:13–17

    PubMed Central  PubMed  Google Scholar 

  171. Gorgels AP, Gijsbers C, Vreede-Swagemakers J de et al (2003) Out-of-hospital cardiac arrest - the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur Heart J 24:1204–1209

    PubMed  Google Scholar 

  172. Hampson C, Louhelainen J, McColl S (2011) An RNA expression method for aging forensic hair samples. J Forensic Sci 56:359–565

    CAS  PubMed  Google Scholar 

  173. Haas C, Klesser B, Maake C et al (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int 3:80–88

    CAS  Google Scholar 

  174. Haas C, Hanson E, Kratzer A et al (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458

    CAS  PubMed  Google Scholar 

  175. Lindenbergh A, Pagter M de, Ramdayal G et al (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6:565–577

    CAS  PubMed  Google Scholar 

  176. Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    CAS  PubMed  Google Scholar 

  177. Iino M, Nakatome M, Ogura Y et al (2003) Real-time PCR quantitation of FE65 a beta-amyloid precursor protein-binding protein after traumatic brain injury in rats. Int J Legal Med 117:153–159

    PubMed  Google Scholar 

  178. Kubo H, Hayashi T, Ago K et al (2014) Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin. Leg Med (Tokyo) 16(3):128–134

    Google Scholar 

  179. Wang Q, Ishikawa T, Michiue T et al (2012) Intrapulmonary aquaporin-5 expression as a possible biomarker for discriminating smothering and choking from sudden cardiac death: a pilot study. Forensic Sci Int 220:154–157

    CAS  PubMed  Google Scholar 

  180. Tricarico C, Pinzani P, Bianchi S et al (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309:293–300

    CAS  PubMed  Google Scholar 

  181. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    PubMed Central  PubMed  Google Scholar 

  182. Kullmann DM (2002) The neuronal channelopathies. Brain 125:1177–1195

    PubMed  Google Scholar 

  183. Boczek NJ, Tester DJ, Ackerman MJ (2012) The molecular autopsy: an indispensable step following sudden cardiac death in the young? Herzschrittmacherther Elektrophysiol 23(3):167–173

    PubMed  Google Scholar 

  184. Nishio H, Iwata M, Suzuki K (2006) Postmortem molecular screening for cardiac ryanodine receptor type 2 mutations in sudden unexplained death: R420W mutated case with characteristics of status thymico-lymphatics. Circ J 11:1402–1406

    Google Scholar 

  185. Gladding PA, Evans CA, Crawford J et al (2010) Posthumous diagnosis of long QT syndrome from neonatal screening cards. Heart Rhythm 4:481–486

    Google Scholar 

  186. Skinner JR, Crawford J, Smith W et al (2011) Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Cardiac Inherited Disease Group New Zealand. Heart Rhythm 3:412–419

    Google Scholar 

  187. Doolan A, Langlois N, Semsarian C (2004) Causes of sudden cardiac death in young Australians. Med J Aust 3:110–112

    Google Scholar 

  188. Tester DJ, Spoon DB, Valdivia HH et al (2004) Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner’s cases. Mayo Clin Proc 11:1380–1384

    Google Scholar 

  189. Kauferstein S, Kiehne N, Jenewein T et al (2013) Genetic analysis of sudden unexplained death: a multidisciplinary approach. Forensic Sci Int 229(1–3):122–127

  190. Kauferstein S, Kiehne N, Peigneur S et al (2013) Cardiac channelopathy causing sudden death as revealed by molecular autopsy. Int J Legal Med 127:145–151

    PubMed  Google Scholar 

  191. Beckmann BM, Kääb S (2012) Molekulargenetische Diagnostik bei hereditären Arrhythmiesyndromen heute und in Zukunft. Herzschr Elektrophys 23:161–166

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Kauferstein, B. Madea und C. Courts geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Madea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauferstein, S., Madea, B. & Courts, C. Forensische Molekularpathologie. Rechtsmedizin 24, 513–532 (2014). https://doi.org/10.1007/s00194-014-0975-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-014-0975-0

Schlüsselwörter

Keywords

Navigation