Skip to main content
Log in

Interaction of a swept shock wave and a supersonic wake

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier–Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 80–99 (2015)

  2. Verma, S.B., Hadjadj, A.: Supersonic flow control. Shock Waves 25, 443–449 (2015)

    Article  Google Scholar 

  3. Menon, S.: Shock-wave-induced mixing enhancement in scramjet combustors. AIAA Paper 89-0104 (1989)

  4. Liu, J.J., Sheng, Y., Sislian, J.P.: Shock waves and turbulence in a hypersonic inlet. Shock Waves 4, 237–245 (1995)

    Article  MATH  Google Scholar 

  5. Battam, N.W., Gorounov, D.G., Korolev, G.L., Ruban, A.I.: Shock wave interaction with a viscous wake in supersonic flow. J. Fluid Mech. 504, 301–341 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Walsh, M.J.: Turbulent wake/shock interaction at Mach 6. AIAA Paper 78-225 (1978)

  7. Zhang, Y.L., Wang, B., Zhang, H.Q., Xue, S.Y.: Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves. J. Propuls. Power 31(1), 156–169 (2015)

    Article  Google Scholar 

  8. Li, Z.R., Jaberi, F.A.: Numerical investigations of shock-turbulence interactions in a planar mixing layer. AIAA Paper 2010-112 (2010)

  9. Marble, F.E., Hendricks, G.J., Zukoski, E.E.: Progress Toward Shock Enhancement of Supersonic Combustion Processes. In: Borghi, R., Murthy, S.N.B. (eds.) Turbulent Reactive Flows. Lecture Notes in Engineering, vol. 40. Springer, New York, NY (1989)

  10. Clemens, N.T., Mungal, M.G.: Effects of sidewall disturbances on the supersonic mixing layer. J. Propuls. Power 8(1), 249–251 (1992)

    Article  Google Scholar 

  11. Zhao, Y.X., Yi, S.H., Tian, L.F., Cheng, Z.Y.: Supersonic flow imaging via nanoparticles. Sci. China E Technol. Sci. 52(12), 3640–3648 (2009)

  12. Feng, J.H., Shen, C.B., Wang, Q.C.: Three-dimensional evolution of large-scale vortices in supersonic flow. Appl. Phys. Lett. 107, 254101 (2015)

    Article  Google Scholar 

  13. He, L., Yi, S.H., Chen, Z., Zhu, Y.: Visualization of the structure of an incident shock wave/turbulent boundary layer interaction. Shock Waves 24, 583–592 (2014)

    Article  Google Scholar 

  14. Zhao, Y.X., Yi, S.H., Tian, L.F., Chen, Z.Y.: The fractal measurement of experimental images of supersonic turbulent mixing layer. Sci. China G Phys. Mech. Astron. 51(8), 1134–1143 (2008)

  15. Zhao, Y.X., Yi, S.H., Tian, L.F., He, L., Chen, Z.Y.: Density field measurement and approximate reconstruction of supersonic mixing layer. Chin. Sci. Bull. 55(19), 2004–2009 (2010)

    Article  Google Scholar 

  16. Clemens, N.T., Smith, M.F., Fernandez, J.V.: Observations of supersonic flat plate wake transition. AIAA Paper 96-0785 (1996)

  17. Clemens, N.T., Smith, M.F.: Observations of supersonic flat plate wake transition. AIAA J. 36(7), 1328–1330 (1998)

    Article  Google Scholar 

  18. Harris, P.J., Fasel, H.F.: Numerical investigation of the unsteady behavior of supersonic plane wakes. AIAA Paper 98-2974 (1998)

  19. Golik, R.J., Webb, W.H., Lees, L.: Further results of viscous interaction theory for the laminar supersonic near wake. AIAA Paper 67-61 (1967)

  20. Panaras, A.G.: Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32, 173–244 (1996)

    Article  Google Scholar 

  21. Gutmark, E.J., Schadow, K.C., Yu, K.H.: Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375–417 (1995)

    Article  Google Scholar 

  22. Cooke, J.C., Hall, M.G.: Boundary layers in three dimensions. Prog. Aerosp. Sci. 2(2), 221–282 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Nature Science Foundation of China (Grant No. 11472304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhou.

Additional information

Communicated by K. Hannemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Zhao, Y.X. & Zhou, J. Interaction of a swept shock wave and a supersonic wake. Shock Waves 27, 761–770 (2017). https://doi.org/10.1007/s00193-017-0719-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0719-7

Keywords

Navigation