Skip to main content
Log in

Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

An Erratum to this article was published on 19 July 2016

Abstract

Rotating detonation engines have the potential to achieve the high propulsive efficiencies of detonation cycles in a simple and effective annular geometry. A two-dimensional Euler simulation is modified to include mixing factors to simulate the imperfect mixing of injected reactant streams. Contrary to expectations, mixing is shown to have a minimal impact on performance. Oblique detonation waves are shown to increase local stream thermal efficiency, which compensates for other losses in the flow stream. The degree of reactant mixing is, however, a factor in controlling the stability and existence of rotating detonations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Voitsekhovskii, B.V.: Maintained detonation. Sov. Phys. Dokl. 4(6), 1207–1209 (1959)

    Google Scholar 

  2. Nicholls, J.A., Cullen, R.E.: The feasibility of a rotating detonation wave rocket motor: final report. University of Michigan, ORA Project 05179 (1964)

  3. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls Power 22(6), 1204–1216 (2006). doi:10.2514/1.17656

    Article  Google Scholar 

  4. Falempin, F., Le Naour, B.: R&T effort on pulsed and continuous detonation wave engines. 16th AIAA/DLR/DGLR Int. Space Planes and Hypersonic Syst. and Technol. Conf. (2009). doi:10.2514/6.2009-7284

  5. Braun, E.M., Lu, F.K., Wilson, D.R., Camberos, J.A.: Airbreathing rotating detonation wave engine cycle analysis. Aerosp. Sci. Technol. 27(1), 201–208 (2013). doi:10.1016/j.ast.2012.08.010

    Article  Google Scholar 

  6. Nordeen, C.A., Schwer, D.A., Schauer, F.R., Hoke, J., Cetegen, B., Barber, T.: Thermodynamics of rotating detonation performance. Fall Tech. Meet. East. States Sect. Comb, Inst (2011)

  7. Kailasanath, K.: The rotating-detonation-wave engine concept: a brief status report. In: 49th Aerospace science meeting (AIAA), AIAA Paper 2011-580 (2011). doi:10.2514/6.2011-580

  8. Wolanski, P.: Detonative propulsion. Proc. Comb. Inst. 34(1), 125–158 (2013). doi:10.1016/j.proci.2012.10.005

    Article  Google Scholar 

  9. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, NY (2008)

    Book  Google Scholar 

  10. Wintenberger, E., Shepherd, J.E.: Thermodynamic analysis of combustion processes for propulsion systems. In: 42nd Aerospace science meeting (AIAA), AIAA Paper 2004-1033 (2004). doi:10.2514/6.2004-1033

  11. Schwer, D.A., Kailasanath, K.: Effect of inlet on fill region and performance of rotating detonation engines. 47th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. (2011) doi:10.2514/6.2011-6044

  12. Nordeen, C.A., Schwer, D.A., Schauer, F.R., Hoke, J., Cetegen, B., Barber, T.: Inlet effects on the thermodynamics of a rotating detonation engine. 7th US Natl. Combust. Meet. (2011)

  13. Nordeen, C.A.: Thermodynamics of a Rotating Detonation Engine. PhD Thesis, University of Connecticut (2013). http://digitalcommons.uconn.edu/dissertations/277/

  14. Nordeen, C.A., Schwer, D.A., Schauer, F.R., Hoke, J., Cetegen, B., Barber, T.: Thermodynamic modeling of a rotating detonation engine. In: 49th Aerospace science meeting (AIAA), AIAA Paper 2011-803 (2011). doi:10.2514/6.2011-803

  15. Schwer, D.A., Kailasanath, K.: Thermodynamic properties of a rotating detonation engine. 7th US Natl. Combust. Meet. (2011)

  16. Schwer, D.A., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Comb. Inst. 33(2), 2195–2202 (2011). doi:10.1016/j.proci.2010.07.050

    Article  Google Scholar 

  17. Schwer, D.A., Kailasanath, K.: Numerical study of the effects of engine size on rotating detonation engines. In: 49th Aerospace science meeting (AIAA), AIAA Paper 2011-581 (2011). doi:10.2514/6.2011-581

  18. Nordeen, C.A., Schwer, D.A., Schauer, F.R., Hoke, J., Cetegen, B., Barber, T.: Divergence and mixing in a rotating detonation engine. In: 51st Aerospace science meeting (AIAA), AIAA Paper 2013-1175 (2013). doi:10.2514/6.2013-1175

  19. Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids 6(4), 1600–1611 (1994). doi:10.1063/1.868273

    Article  MATH  Google Scholar 

  20. Schwer, D.A., Kailasanath, K.: Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proc. Combust. Inst. 34(2), 1991–1998 (2013). doi:10.1016/j.proci.2012.05.046

    Article  Google Scholar 

  21. Kailasanath, K., Oran, E.S., Boris, J.P., Young, T.R.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61(3), 199–209 (1985). doi:10.1016/0010-2180(85)90101-4

    Article  Google Scholar 

  22. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Pearson Education Ltd., Edinburgh Gate (2007)

    Google Scholar 

  23. Tellefsen, J.R., King, P.I., Schauer, F.R., Hoke, J.L.: Analysis of an RDE with convergent nozzle in preparation for turbine integration. In: 50th Aerospace science meeting (AIAA), AIAA Paper 2012-773 (2012). doi:10.2514/6.2012-773

  24. Lyman, F.A.: On the conservation of rothalpy in turbomachines. J. Turbomach. 115(3), 520–526 (1993)

    Article  Google Scholar 

  25. Nordeen, C.A., Schwer, D.A., Schauer, F.R., Hoke, J., Barber, T., Cetegen, B.: Energy transfer in a rotating detonation engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2011-6045 (2011). doi:10.2514/6.2011-6045

  26. Bykovskii, F.A., Vedernikov, E.F.: Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves 39(3), 323–334 (2003). doi:10.1023/A:1023800521344

    Article  Google Scholar 

  27. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of hydrogen-oxygen mixtures. 1. annular cylindrical combustors. Combust. Explos. Shock Waves 44(2), 150–162 (2008). doi:10.1007/s10573-008-0021-1

    Article  Google Scholar 

  28. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous detonation in the regime of nonstationary ejection of the oxidizer. Dokl. Phys. 54(1), 29–31 (2009). doi:10.1134/S102833580901008X

    Article  Google Scholar 

  29. Kessler, D.A., Gamezo, V.N., Oran, E.S.: Gas-phase detonation propagation in mixture composition gradients. Philos. Trans. R. Soc. A 370(1960), 567–96 (2012). doi:10.1098/rsta.2011.0342

    Article  MathSciNet  MATH  Google Scholar 

  30. Nordeen, C.A., Schwer, D.A., Schauer, F., Hoke, J., Barber, T., Cetegen, B.: Thermodynamic model of a rotating detonation engine. Combust. Explos. Shock Waves 50(5), 568–577 (2014). doi:10.1134/S0010508214050128

    Article  Google Scholar 

  31. Schwer, D.A., Kailasanath, K.: Feedback into mixture plenums in rotating detonation engines. 50th Aerospace science meeting (AIAA), AIAA Paper 2012-617 (2012). doi:10.2514/6.2012-617

Download references

Acknowledgments

This work was sponsored by a contract from Innovative Scientific Solutions, Inc. and by the Office of Naval Research through the NRL 6.1 Computational Physics Task Area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Nordeen.

Additional information

Communicated by J. Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 2244 KB)

Supplementary material 2 (mpg 2211 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordeen, C.A., Schwer, D., Schauer, F. et al. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves 26, 417–428 (2016). https://doi.org/10.1007/s00193-015-0570-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0570-7

Keywords

Navigation