Skip to main content
Log in

Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this work, we investigate the growth of interface perturbations following the interaction of a shock wave with successive layers of fluids. Using the Discontinuous Galerkin method, we solve the two-dimensional multifluid Euler equations. In our setup, a shock impacts up to four adjacent fluids with perturbed interfaces. At each interface, the incoming shock generates reflected and transmitted shocks and rarefactions, which further interact with the interfaces. By monitoring perturbation growth, we characterize the influence these instabilities have on each other and the fluid mixing as a function of time in different configurations. If the third gas is lighter than the second, the reflected rarefaction at the second interface amplifies the growth at the first interface. If the third gas is heavier, the reflected shock decreases the growth and tends to reverse the Richtmyer–Meshkov instability as the thickness of the second gas is increased. We further investigate the effect of the reflected waves on the dynamics of the small scales and show how a phase difference between the perturbations or an additional fluid layer can enhance growth. This study supports the idea that shocks and rarefactions can be used to control the instability growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. Since the present simulations are two-dimensional, they cannot represent vortex stretching, and thus turbulence. By TKE, our intent is to describe the energy contained in the small scales.

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a Quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191(11–12), 1097–1112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adjerid, S., Massey, T.C.: Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3331–3346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balakumar, B.J., Orlicz, G.C., Tomkins, C.D., Prestridge, K.P.: Simultaneous particle-image velocimetryplanar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids 20(12), 124103 (2008)

    Article  Google Scholar 

  5. Brouillette, M.: The Richtmyer-Meshkov instability. Ann. Rev. Fluid Mech. 34(1), 445–468 (2002)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Lin, G., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1997)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1997)

    Article  MathSciNet  Google Scholar 

  11. Collins, B.D., Jacobs, J.W.: PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface. J. Fluid Mech. 464, 113–136 (2002)

    MATH  Google Scholar 

  12. Cook, A.W., Dimotakis, P.E.: Transition stages of RayleighTaylor instability between miscible fluids. J. Fluid Mech. 443, 69–99 (2001)

    MATH  Google Scholar 

  13. Di Stefano, C.A., Malamud, G., Henry de Frahan, M.T., Kuranz, C.C., Shimony, A., Klein, S.R., Drake, R.P., Johnsen, E., Shvarts, D., Smalyuk, V.A., Martinez, D.: Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow. Phys. Plasmas 21(5), 056306 (2014)

    Article  Google Scholar 

  14. Drake, R.P.: High-Energy-Density Physics. Springer, Berlin (2006)

    Google Scholar 

  15. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goncharov, V.N., McKenty, P., Skupsky, S., Betti, R., McCrory, R.L., Cherfils-Clerouin, C.: Modeling hydrodynamic instabilities in inertial confinement fusion targets. Phys. Plasmas 7(12), 5118–5139 (2000)

    Article  Google Scholar 

  17. Hahn, M., Drikakis, D., Youngs, D.L., Williams, R.J.R.: RichtmyerMeshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow. Phys. Fluids 23(4), 046101 (2011)

    Article  Google Scholar 

  18. Henry de Frahan, M.T., Johnsen, E.: Discontinuous Galerkin method for multifluid Euler equations. In: 21st AIAA Comput. Fluid Dyn. Conf., 2013–2595, pp. 1–12. American Institute of Aeronautics and Astronautics, Reston, Virginia (2013)

  19. Henry de Frahan, M.T., Johnsen, E.: A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys. 280, 489–509 (2014). doi:10.1016/j.jcp.2014.09.030

  20. Hill, D.J., Pantano, C., Pullin, D.I.: Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. J. Fluid Mech. 557(2006), 29–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P., Zhang, Q.: Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 55–79 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Houim, R.W., Kuo, K.K.: A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios. J. Comput. Phys. 230(23), 8527–8553 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kifonidis, K., Plewa, T., Scheck, L., Janka, H.T., Müller, E.: Non-spherical core collapse supernovae. Astron. Astrophys. 453(2), 661–678 (2006)

    Article  Google Scholar 

  24. Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschr. fr Math. u. Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  25. Landen, O.L., Benedetti, R., Bleuel, D., Boehly, T.R., Bradley, D.K., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C.J., Clark, D., Collins, G.W., Dewald, E.L., Dixit, S.N., Doeppner, T., Edgell, D., Eggert, J., Farley, D., Frenje, J.A., Glebov, V., Glenn, S.M., Glenzer, S.H., Haan, S.W., Hamza, A., Hammel, B.A., Haynam, C.A., Hammer, J.H., Heeter, R.F., Herrmann, H.W., Hicks, D.G., Hinkel, D.E., Izumi, N., Gatu Johnson, M., Jones, O.S., Kalantar, D.H., Kauffman, R.L., Kilkenny, J.D., Kline, J.L., Knauer, J.P., Koch, J.A., Kyrala, G.A., LaFortune, K., Ma, T., Mackinnon, A.J., Macphee, A.J., Mapoles, E., Milovich, J.L., Moody, J.D., Meezan, N.B., Michel, P., Moore, A.S., Munro, D.H., Nikroo, A., Olson, R.E., Opachich, K., Pak, A., Parham, T., Patel, P., Park, H.S., Petrasso, R.P., Ralph, J., Regan, S.P., Remington, B.A., Rinderknecht, H.G., Robey, H.F., Rosen, M.D., Ross, J.S., Salmonson, J.D., Sangster, T.C., Schneider, M.B., Smalyuk, V., Spears, B.K., Springer, P.T., Suter, L.J., Thomas, C.A., Town, R.P.J., Weber, S.V., Wegner, P.J., Wilson, D.C., Widmann, K., Yeamans, C., Zylstra, A., Edwards, M.J., Lindl, J.D., Atherton, L.J., Hsing, W.W., MacGowan, B.J., Van Wonterghem, B.M., Moses, E.I.: Progress in the indirect-drive National Ignition Campaign. Plasma Phys. Control. Fusion 54(12), 124026 (2012)

  26. Latini, M., Schilling, O., Don, W.S.: Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. J. Comput. Phys. 221(2), 805–836 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2(11), 3933–4024 (1995)

    Article  Google Scholar 

  28. Mikaelian, K.O.: Numerical simulations of Richtmyer-Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 8(5), 1269–1292 (1996)

    Article  MATH  Google Scholar 

  29. Motl, B., Oakley, J., Ranjan, D., Weber, C., Anderson, M., Bonazza, R.: Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges. Phys. Fluids 21(12), 126102 (2009)

    Article  Google Scholar 

  30. Movahed, P., Johnsen, E.: Numerical simulations of the Richtmyer-Meshkov instability with reshock. In: 20th AIAA Comput. Fluid Dyn. Conf., 2011–3689, pp. 1–12. American Institute of Aeronautics and Astronautics, Reston, Virigina (2011)

  31. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability. J. Comput. Phys. 239, 166–186 (2013)

    Article  MathSciNet  Google Scholar 

  32. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  33. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schilling, O., Latini, M., Don, W.: Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys. Rev. E 76(2), 026319 (2007)

    Article  MathSciNet  Google Scholar 

  35. Shankar, S.K., Lele, S.K.: Numerical investigation of turbulence in reshocked RichtmyerMeshkov unstable curtain of dense gas. Shock Waves 24(1), 79–95 (2013)

    Article  Google Scholar 

  36. Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. A Math. Phys. Eng. Sci. 201(1065), 192–196 (1950)

    Article  MATH  Google Scholar 

  37. Vetter, M., Sturtevant, B.: Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface. Shock Waves 4(5), 247–252 (1995)

    Article  Google Scholar 

  38. Weber, C., Haehn, N., Oakley, J., Rothamer, D., Bonazza, R.: Turbulent mixing measurements in the Richtmyer-Meshkov instability. Phys. Fluids 24(7), 074105 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the DOE NNSA/ASC under the predictive Science Academic Alliance Program by Grant No. DEFC52-08NA28616, by ONR grant N00014-12-1-0751 under Dr. Ki-Han Kim, by NSF grant CBET 1253157, and through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Henry de Frahan.

Additional information

Communicated by D. Ranjan.

This paper is based on work that was presented at the 29th International Symposium on Shock Waves, Madison, Wisconsin, USA, July 14–19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry de Frahan, M.T., Movahed, P. & Johnsen, E. Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Shock Waves 25, 329–345 (2015). https://doi.org/10.1007/s00193-014-0539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0539-y

Keywords

Navigation