Skip to main content
Log in

Influences of obstacle geometries on shock wave attenuation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interactions of planar shock waves with obstacles of different geometries were investigated numerically using large eddy simulation and a high-order numerical scheme. The immersed boundary method was also employed to handle complex boundary geometries. The development and variations of shock wave structures during the interaction processes were discussed. The influences of the upper side, windward and leeward geometries of the obstacles on shock wave attenuation were also examined. Our numerical results showed that the shock wave attenuation is inversely related to the width of the upper side of the obstacles. For the windward sides of the obstacles, negative slopes have better effects on shock wave attenuation than do other values. In addition, the influence of the leeward slope on shock wave attenuation is weaker than that of the upside and windward slopes. Finally, obstacle shapes with a high efficiency for shock wave attenuation have been obtained and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Skews, B.W., Atkins, M.D., Seitz, M.W.: The impact of a shock wave on porous compressible foams. J. Fluid. Mech. 253, 245–265 (1993)

    Article  Google Scholar 

  2. Britan, A., Vasiliev, E., Kulikovski, A.: Numerical simulation of the shock wave attenuation by the foam screen composed of a gas–liquid foam. Comb. Explos. Shock Waves 30(3), 135–141 (1994)

    Google Scholar 

  3. Kitagawa, K., Takayama, K., Yasuhara, M.: Attenuation of shock waves propagating in polyurethane foams. Shock Waves 15, 437–445 (2006)

    Article  Google Scholar 

  4. Britan, A., Liverts, M., Shapiro, H., Ben-Dor, G., Chinnayya, A., Hadjadj, A.: Macro-mechanical modeling of blast-wave mitigation in foams. Part I: Review of available experiments and models. Shock Waves 23(1), 5–23 (2013)

    Article  Google Scholar 

  5. Britan, A., Liverts, M., Shapiro, H., Ben-Dor, G.: Macro-mechanical modeling of blast-wave mitigation in foams. Part II: Reliability of pressure measurements. Shock Waves 23(1), 25–38 (2013)

    Article  Google Scholar 

  6. Naiman, N., Knight, D.D.: The effect of porosity on shock interaction with a rigid porous barriers. Shock Waves 16, 321–337 (2007)

    Article  MATH  Google Scholar 

  7. Levy, A., Ben-Dor, G., Skews, B.W., Sorek, S.: Head-on collision of normal shock waves with rigid porous materials. Exp. Fluids 15, 183–190 (2013)

    Google Scholar 

  8. Levy, A., Ben-Dor, G., Sorek, S.: Numerical investigation of the propagation of shock waves in rigid porous materials: flow field behavior and parametric study. Shock Waves 8, 127–137 (1998)

    Article  MATH  Google Scholar 

  9. Kazemi-Kamyab, V., Subramaniam, K., Andreopoulos, Y.: Stress transmission in porous materials impacted by shock waves. J. Appl. Phys. 109, 013523 (2011)

    Article  Google Scholar 

  10. Baer, M.R.: Numerical studies of dynamic compaction of inert and energetic granular materials. ASME J. Appl. Mech. 55, 36–43 (1988)

    Article  Google Scholar 

  11. Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27, 617–634 (2001)

    Article  MATH  Google Scholar 

  12. Chen, Z.H., Fan, B.C., Jiang, X.H.: Suppression effects of powder suppressants on the explosions of oxyhydrogen gas. J. Loss Prev. Process Ind. 19, 648–655 (2006)

    Article  Google Scholar 

  13. Dosanjh, D.S.: Interaction of Grids with Travelling Shock Waves. NACA TN 3680 (1956)

  14. Britan, A., Igra, O., Ben-Dor, G., Shapiro, H.: Shock wave attenuation by grids and orifice plates. Shock Waves 16, 1–15 (2006)

    Article  Google Scholar 

  15. Berger, S., Sadot, O., Ben-Dor, G.: Experimental investigation on the shock-wave load attenuation by geometrical means. Shock Waves 20, 29–40 (2010)

    Article  Google Scholar 

  16. Sasoh, A., Matsuoka, K., Nakashio, K., Timofeev, E., Takayama, K., Voinovich, P., Saito, T., Hirano, S., Ono, S., Makino, Y.: Attenuation of weak shock waves along pseudo-perforated walls. Shock Waves 8, 149–159 (1998)

    Article  Google Scholar 

  17. Epstein, D.B., Kudryavtsev, A.N.: Shock and blast wave propagation through a porous barrier. In: 28th International Symposium on Shock Waves. Manchester, England, pp. 537–542 (2011)

  18. Gongora-Orozco, N., Zare-Behtash, H., Kontis, K.: Experimental studies on shock wave propagating through junction with grooves. AIAA paper 2009–0327 (2009)

  19. Sha, S., Chen, Z.H., Jiang, X.H.: Numerical investigations on blast wave attenuation by obstacles. Procedia Eng. 45, 453–457 (2012)

    Article  Google Scholar 

  20. Andreopoulos, Y., Xanthos, S., Subramaniam, K.: Moving shocks through metallic grids: their interaction and potential for blast wave mitigation. Shock Waves 16, 455–466 (2007)

    Article  Google Scholar 

  21. Misra, A., Pullin, D.I.: A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 2443–2454 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kosovic, B., Pullin, D.I., Samtaney, R.: Subgrid-scale modelling for large-eddy simulations of compressible turbulence. Phys. Fluids 14, 1511–1522 (2002)

    Article  Google Scholar 

  23. Pullin, D.I.: A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 2311–2319 (2000)

    Article  MathSciNet  Google Scholar 

  24. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  27. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Miller, G.H., Colella, P.: A conservative three-dimensional Eulerian method for coupled solid–fluid shock capturing. J. Comput. Phys. 183, 26–82 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schumann, U.: Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schardin, H.: High frequency cinematography in the shock tube. J. Photo Sci. 5, 19–26 (1957)

    Google Scholar 

  31. Sha, S., Chen, Z.H., Zhang, H.H., Jiang, X.H.: Numerical investigations on the Schardin’s problem. Acta Phys. Sin. 61(6), 064702 (2012)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 11272156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Additional information

Communicated by A. Sasoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, S., Chen, Z. & Jiang, X. Influences of obstacle geometries on shock wave attenuation. Shock Waves 24, 573–582 (2014). https://doi.org/10.1007/s00193-014-0520-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0520-9

Keywords

Navigation