Skip to main content
Log in

On the neutralization of bacterial spores in post-detonation flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, \(R_\mathrm{C}\) = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, \(d^0\), of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0\(R_\mathrm{C}\), within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when \(d^0\) is greater than 8.0\(R_\mathrm{C}\). The percentage of intact spores varied from 0 to 100 for 3.0\(R_\mathrm{C}\) \(<d^0<\) 8.0\(R_\mathrm{C}\) with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Whitney, E.A.S., Beatty, M.E., Taylor Jr. T.H., Weyant, R., Sobel, J., Arduino, M. J., Ashford, D.A.: Inactivation of Bacillus anthracis spores. Emerg. Infect. Dis. 9 (2003)

  2. Setlow, P.: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101, 514–525 (2006)

    Article  Google Scholar 

  3. Balakrishnan, K., Genin, F., Nance, D.V., Menon, S.: Numerical study of blast characteristics from detonation of homogeneous explosives. Shock Waves 20, 147–162 (2010)

    Article  MATH  Google Scholar 

  4. Kuhl, A.L., Bell, J.B., Beckner, V.E., Reichenbach, H.: Gasdynamic model of turbulent combustion in TNT explosions. Proc. Combust. Inst. 33, 2177–2185 (2011)

    Article  Google Scholar 

  5. Fedina, E., Fureby, C.: Investigating ground effects on mixing and afterburning during a TNT explosion. Shock Waves 23, 251–261 (2013)

    Article  Google Scholar 

  6. Balakrishnan, K., Menon, S.: On turbulent chemical explosions into dilute aluminum particle clouds. Combst. Theor. Model. 14, 583–617 (2010)

    Article  MATH  Google Scholar 

  7. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Stelow, P.: Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000)

    Google Scholar 

  8. Sislian, P.R., Rau, J., Zhang, X., Pham, D., Li, M., Madler, L., Christofides, P.D.: Bacterial aerosol neutralization by aerodynamic shocks using an impactor system: experimental results for B. atropheus spores. Chem. Eng. Sci. 65, 4803–4815 (2010)

    Article  Google Scholar 

  9. McCartt, A.D., Gates, S., Lappas, P., Jeffries, J.B., Hanson, R.K.: In situ optical measurments of bacterial endospore breakdown in a shock tube. Appl. Phys. B 106, 769–774 (2012)

    Article  Google Scholar 

  10. Gottiparthi, K.C., Menon, S.: A study of interaction of clouds of inert particles with detonation in gases. Combust. Sci. Technol. 184, 406–433 (2012)

    Article  Google Scholar 

  11. Balakrishnan, K., Menon, S.: On the role of ambient reactive particles in the mixing and afterburn behind explosive blast waves. Combust. Sci. Technol. 182, 186–214 (2010)

    Google Scholar 

  12. Zukas, J.A., Walters, W.P.: Explosive Effects and Applications. Springer, New York (1997)

    Google Scholar 

  13. Crowe, C.T., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (1998)

    Google Scholar 

  14. Boiko, V.M., Kiselev, V.P., Keselev, S.P., Papyrin, A.P., Poplavsky, S.V., Fomin, V.M.: Shock wave interaction with a cloud of particles. Shock Waves 7, 275–285 (1997)

    Article  MATH  Google Scholar 

  15. Carrera, M., Zandomeni, R.O., Fitzgibbon, J., Sagripanti, J.L.: Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 102, 303–312 (2007)

    Article  Google Scholar 

  16. Gates, S.D., McCartt, A.D., Lappas, P., Jeffries, J.B., Hanson, R.K., Hokama, L.A., Mortelmans, K.E.: Bacillus endospore resistance to gas dynamic heating. J. Appl. Microbiol. 109, 1591–1598 (2010)

    Google Scholar 

  17. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989)

    Article  Google Scholar 

  18. Kumar, R., Saurav, S., Titov, E.V., Levin, D.A., Long, R.F., Neely, W.C., Setlow, P.: Thermo-structural studies of spores subjected to high temperature gas environments. Int. J. Heat Mass Transf. 54, 755–765 (2011)

    Article  MATH  Google Scholar 

  19. Gates, S.D., McCartt, A.D., Jeffries, J.B., Hanson, R.K., Hokama, L.A., Mortelmans, K.E.: Extension of Bacillus endospore gas dynamic heating studies to multiple species and test conditions. J. Appl. Microbiol. 111, 925–931 (2011)

    Article  Google Scholar 

  20. Génin, F., Menon, S.: Studies of shock/turbulence shear layer interaction using large-eddy simulation. Comput. Fluids 39, 800–819 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schulz, J., Gottiparthi, K.C., Menon, S.: Ionization in gaseous detonation waves. Shock Waves 22, 579–590 (2012)

    Article  Google Scholar 

  22. Gottiparthi, K.C., Menon, S.: Simulations of heterogeneous detonations and post-detonation turbulent mixing and afterburning. AIP Conf. Proc. 1426, 1639–1642 (2012)

    Article  Google Scholar 

  23. Xu, S., Aslam, T., Stewart, D.S.: High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combust. Theor. Model. 1, 113–142 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Defense Threat Reduction Agency (Dr. S. Peiris, Program Manager). The computational resources are provided by DoD HPC Centers at the US Air Force Research Laboratory DoD Supercomputing Resource Center and Engineer Research and Development Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Menon.

Additional information

Communicated by F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottiparthi, K.C., Schulz, J.C. & Menon, S. On the neutralization of bacterial spores in post-detonation flows. Shock Waves 24, 455–466 (2014). https://doi.org/10.1007/s00193-014-0504-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0504-9

Keywords

Navigation