Skip to main content
Log in

Numerical study of shock-wave mitigation through matrices of solid obstacles

Shock Waves Aims and scope Submit manuscript

Abstract

Shock-wave propagation through different arrays of solid obstacles and its attenuation are analyzed by means of numerical simulations. The two-dimensional compressible Navier–Stokes equations are solved using a fifth-order weighted essentially non-oscillatory scheme, in conjunction with an immersed-boundary method to treat the embedded solids within a cartesian grid. The present study focuses on the geometrical aspects of the solid obstacles, particularly at lower effective flow area, where the frictional forces are expected to be important. The main objective is to analyze the controlling mechanism for shock propagation and attenuation in complex inhomogeneous and porous medium. Different parameters are investigated such as the geometry of the obstacles, their orientation in space as well as the relaxation lengths between two consecutive columns. The study highlights a number of interesting phenomena such as compressible vortices and shock–vortex interactions that are produced in the post-shock region. This also includes shock interactions, hydrodynamic instabilities and non-linear growth of the mixing. Ultimately, the Kelvin–Helmholtz instability invokes transition to a turbulent mixing region across the matrix columns and eddies of different length scales are generated in the wake region downstream of the solid blocks. The power spectrum of instantaneous dynamic pressure shows the existence of a wide range of frequencies which scales nearly with f −5/3. In terms of shock attenuation, the results indicate that the staggered matrix of reversed triangular prism (where the base of the triangular prism is facing the incoming shock) is the most efficient arrangement. In this case, both static and dynamic pressure impulses show significant reduction compared to the other studied configurations, which confirms the effectiveness of this type of barrier configuration. Furthermore, the use of combination of reverse–reverse arrangement of triangular prism obstacle maze is found more effective compared to the forward–reverse or forward–forward arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Vasilev E.I., Mitichkin S.Yu., Testov V.G., Haibo H.: Pressure dynamics during shock loading of aqueous foams. Tech. Phys. 43(7), 761–765 (1998)

    Article  Google Scholar 

  2. Ball G.J., East R.A.: Shock and blast attenuation by aqueous foam barriers: influences of barrier geometry. Shock Waves 9, 37–47 (1999)

    Article  MATH  Google Scholar 

  3. Surov V.S.: Reflection of an air shock wave from a foam layer. High Temp. 38(1), 97–105 (2000)

    Article  Google Scholar 

  4. Britan A., Ben-Dor G., Shapiro H., Liverts M., Shreiber I.: Drainage effects on shock wave propagating through aqueous foams. Colloids Surf. A Physicochem. Eng. Aspects 309, 137150 (2007)

    Article  Google Scholar 

  5. Jourdan G., Biamino L., Mariani C., Blanchot C., Daniel E., Massoni J., Houas L., Tosello R., Praguine D.: Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves 20, 285296 (2010)

    Article  Google Scholar 

  6. Hattingh T.S., Skews B.W.: Experimental investigation of the interaction of shock waves with textiles. Shock Waves 11, 115–123 (2001)

    Article  Google Scholar 

  7. Gubaidullin A.A., Dudko D.N., Urmancheev S.F.: Modeling of the interaction between an air shock wave and a porous screen. Combust. Explos. Shock Waves 36(4), 496–505 (2000)

    Article  Google Scholar 

  8. Gubaidullin A.A., Britan A., Dudko D.N.: Air shock wave interaction with an obstacle covered by porous material. Shock Waves 13, 41–48 (2003)

    Article  MATH  Google Scholar 

  9. Boldyreva O.Yu., Gubaidullin A.A., Dudko D.N., Kutushev A.G.: Numerical study of the transfer of shock-wave loading to a screened flat wall through a layer of a powdered medium and a subsequent air gap. Combust. Explos. Shock Waves 43(1), 114–123 (2007)

    Article  Google Scholar 

  10. Britan A., Ben-Dor G., Igra O., Shapiro H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27, 617–634 (2001)

    Article  MATH  Google Scholar 

  11. Bakken J., Slungaard T., Engebretsen T., Christensen S.O.: Attenuation of shock waves by granular filters. Shock Waves 13, 33–40 (2003)

    Article  Google Scholar 

  12. Andreopoulos Y., Xanthos S., Subramaniam K.: Moving shocks through metallic grids: their interaction and potential for blast wave mitigation. Shock Waves 16, 455–466 (2007)

    Article  Google Scholar 

  13. Sasoh A., Matsuoka K., Nakashio K., Timofeev E., Takayama K., Voinovich P., Saito T., Hirano S., Ono S., Makino Y.: Attenuation of weak shock waves along pseudo-perforated walls. Shock Waves 8, 149–159 (1998)

    Article  Google Scholar 

  14. Britan A., Karpov A.V., Vasiev E.I., Igra O., Ben-Dor G., Shapiro E.: Experimental and numerical study of shock wave interaction with perforated plates. J. Fluids Eng. 126, 399–409 (2004)

    Article  Google Scholar 

  15. Britan A., Igra O., Ben-Dor G., Shock H.: wave attenuation by grids and orifice plates. Shock Waves 16, 1–15 (2006)

    Article  Google Scholar 

  16. Seeraj S., Skews B.W.: Dual-element directional shock wave attenuators. Exp. Thermal Fluid Sci. 33, 503–516 (2009)

    Article  Google Scholar 

  17. Rogg B., hermann D., Adomeit G.: Shock-induced flow in regular arrays of cylinders and packed beds. Int. J. Heat Mass Transf. 28(12), 2285–2298 (1985)

    Article  Google Scholar 

  18. Skews B.W., Draxl M.A., Felthun L., Seitz M.W.: Shock wave trapping. Shock Waves 8, 23–28 (1998)

    Article  MATH  Google Scholar 

  19. Suzuki, K., Himeki, H., Watanuki, T., Abe, T.: Experimental studies on characteristics of shock wave propagation through cylinder array, The ISAS Report No. 676, March (2000)

  20. Abe, A., Takayama, K.: Attenuation of shock waves propagating over arrayed spheres. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of 24th International Congress High-Speed Photography and Photonic, Sendai, Japan: SPIE The international Society for Optical Engineering 582588 (2000)

  21. Honghui, S., Yamamura, K.: The interaction between shock waves and solid spheres arrays in a shock tube. Acta Mech. Sinica 20, 3 (2004)

    Google Scholar 

  22. Friend, W.H.: The interaction of a plane shock with an inclined perforated plate. UTIA Technical Note 25 (1958)

  23. Wilson, J., Chima, R.V., Skews, B.W.: Transmission and incidence losses for a slotted plate, NASA/TM1998-207420

  24. Berger S., Sadot O., Ben-Dor G.: Experimental investigation on the shock-wave load attenuation by geometrical means. Shock waves 20(1), 29–40 (2010)

    Article  Google Scholar 

  25. Naiman H., Knight D.D.: The effect of porosity on interaction with a rigid, porous barrier. Shock Waves 16, 321–337 (2007)

    Article  MATH  Google Scholar 

  26. Chaudhuri A., Hadjadj A., Chinnayya A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230, 1731–1748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glazer E., Sadot O., Hadjadj A., Chaudhuri A.: Velocity scaling of a shock wave reflected off a circular cylinder. Phys. Rev. E 83, 066317 (2011)

    Article  Google Scholar 

  28. Chaudhuri, A., Hadjadj, A., Sadot, O., Glazer, E.: Computational study of shock-wave interaction with solid obstacles using immersed boundary methods. Int. J. Num. Method Eng. doi:10.1002/nme.3271 (2011)

  29. Jiang G., Shu C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion, PhD thesis, Physiol., Albert Einstein Coll. Med., vol. 378, pp. 72–30, Univ. Microfilms (1972)

  31. Mittal R., Iaccarino G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  32. Iaccarino G., Verzicco R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56, 331–347 (2003)

    Article  Google Scholar 

  33. Tseng Y., Ferziger J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao T., Tseng Y., Lu X.: An improved hybrid cartesian/immersed boundary method for fluid-solid flows. Int. J. Numer. Meth. Fluids 55, 1189–1211 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dadone A., Grossman B.: Ghost-cell method for inviscid two-dimensional flows on cartesian grids. AIAA J. 42(12), 2499–2507 (2004)

    Article  Google Scholar 

  36. Chaudhuri A., Hadjadj A., Chinnayya A., Palerm S.: Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47(2), 170–197 (2011). doi:10.1007/s10915-010-9429-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Whitham G.B.: A new approach to problems of shock dynamics. Part I: two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schardin H.: High frequency cinematography in the shock tube. J. Photo Sci. 5, 19–26 (1957)

    Google Scholar 

  39. Bryson A.E., Gross R.W.F.: Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech. 10, 1–16 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  40. Skews B.W.: The shape of diffraction shock wave. J. Fluid Mech. 29, 297–304 (1967)

    Article  Google Scholar 

  41. Yang J.Y., Liu Y., Lomax H.: Computation of shock wave reflection by circular cylinders. AIAA J. 25(5), 683–689 (1987)

    Article  Google Scholar 

  42. Kaca, J.: An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder (UTIAS Technical Note), vol. 269 (1988)

  43. Hillier R.: Computation of shock wave diffraction at a ninety degree convex edge. Shock waves 1, 89–98 (1991)

    Article  MATH  Google Scholar 

  44. Sivier S., Loth E., Baum J., Lohner R.: Vorticity produced by shoch wave diffraction. Shock waves 2, 31–41 (1992)

    Article  Google Scholar 

  45. Reichenbach H.: In the footsteps of Ernst Mach—a historical review of shock wave research at the Ernst-MAch-Institut. Shock waves 2, 65–79 (1992)

    Article  Google Scholar 

  46. Zoltak J., Drikakis D.: Hybrid upwind methods fir the simulation of unsteady shock-wave diffraction over a cylinder. Comput. Methods Appl. Mech. Eng. 162, 165–185 (1998)

    Article  MATH  Google Scholar 

  47. Chang S., Chang K.: On the shock–vortex interaction in Schardin’s problem. Shock Waves 10, 333–343 (2000)

    Article  MATH  Google Scholar 

  48. Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T., Takayama, K.: Shock-Wave Mach-reflection slip-stream instability. Phys Rev Lett. 96, 174503 (2006)

    Google Scholar 

  49. Ripley R.C., Lien F.S., Yovanovich M.M.: Numerical simulation of shock diffraction on unstructured meshes. Comput. Fluids 35, 1420–1431 (2006)

    Article  MATH  Google Scholar 

  50. Tseng T.-I., Yang R.-J.: Numerical simulation of vorticity production in shock diffraction. AIAA J. 44(5), 1040–1047 (2006)

    Article  Google Scholar 

  51. Ben-Dor G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  52. Suzuki, K., Himeki, H., Watanuki, T., Abe, T.: Experimental studies on characteristics of shock wave propagation through cylinder array, The Institute of Space and Astronautical Science Report No. 676, March (2000)

  53. Anderson J.D.: Modern Compressible Flow with Historical Perspective. McGraw-Hill, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chaudhuri.

Additional information

Communicated by C. Needham.

This paper was presented in part at the 28th International Symposium on Shock Waves, Manchester, UK, 17–22 July 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, A., Hadjadj, A., Sadot, O. et al. Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013). https://doi.org/10.1007/s00193-012-0362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0362-2

Keywords

Navigation