Skip to main content
Log in

Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by \(90^{\circ }\) such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are \(4 \pi \) fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271–285, 2012a). As an example, we obtained \(2190\times 2190\) coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez Coladdo JR, Fernandez Rico J, Lopez R, Paniagua M, Ramirez G (1989) Rotation of real spherical harmonics. Comput Phys Commun 52:323–331

    Article  Google Scholar 

  • Aubert G (2013) An alternative to Wigner d-matrices for rotating real spherical harmonics. AIP Adv 3:062121

    Article  Google Scholar 

  • Biedenharn LC, Louck JD (1981) Angular momentum in quantum physics. Addison-Wesley, Reading

  • Blanco MA, Florez M, Bermejo M (1997) Evaluation of the rotation matrices in the basis of real spherical harmonics. J Mol Struct (Theochem) 419:19–27

    Article  Google Scholar 

  • Choi CH, Ivanic J, Gordon MS, Ruedenberg K (1999) Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J Chem Phys 111:8825

    Article  Google Scholar 

  • Condon EU, Shortley GH (1953) The theory of atomic spectra. Cambridge Univ. Press, London

    Google Scholar 

  • Dachsel H (2006) Fast and accurate determination of the Wigner rotation matrices in the fast multipole method. J Chem Phys 124:144115–144121

    Article  Google Scholar 

  • Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton Univ Press, Princeton

    Book  Google Scholar 

  • Feng XM, Wang P, Yang W, Jin GR (2015) High-precision evaluation of Wigner’s \(d\) matrix by exact diagonalization. Phys Rev E 92:043307

    Article  Google Scholar 

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL et al (2013) Bedmap2: improved ice bed, surface and thickness data sets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Fukushima T (1994) New canonical variables for orbital and rotational motions. Celest Mech Dyn Astron 60:57–68

    Article  Google Scholar 

  • Fukushima T (2007a) New two-body regularization. Astron J 133:1–10

    Google Scholar 

  • Fukushima T (2007b) Numerical comparison of two-body regularizations. Astron J 133:2815–2824

    Article  Google Scholar 

  • Fukushima T (2012a) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J Geod 86:271–285

    Article  Google Scholar 

  • Fukushima T (2012b) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: II first-, second-, and third-order derivatives. J Geod 86:1019–1028

    Article  Google Scholar 

  • Fukushima T (2014) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: III integrals. Comput Geosci 63:17–21

    Article  Google Scholar 

  • Gimbutas Z, Greengard L (2009) A fast and stable method for rotating spherical harmonic expansions. J Comput Phys 228:5621–5627

    Article  Google Scholar 

  • Goad CC (1987) A method to compute inclination functions and their derivatives. Manuscr Geod 12:11–15

    Google Scholar 

  • Goldstein JD (1984) The effect of coordinate system rotations on spherical harmonic expansions: a numerical method. J Geophys Res 89:4413–4418

    Article  Google Scholar 

  • Goldstein H, Safko JL, Poole CP (2001) Classical Mechanics, 3rd edn. Peason Ed Ltd, Harlow

  • Gooding RH (1971) A recurrence relation for inclination functions and their derivatives. Celest Mech 4:91–98

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2008) On the inclination function and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101:247–272

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2010) On a Fortran procedure for rotating spherical harmonic coefficients. Celest Mech Dyn Astron 108:95–106

    Article  Google Scholar 

  • Gumerov NA, Duraiswami R (2015) Recursive computation of spherical harmonic rotation coefficients of large degree. Excursions in harmonic analysis, vol 2. Springer, Berlin, pp 105–141

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hirt C, Rexer M, Scheinert M, Pail R, Claessens S, Holmes S (2016) A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data. J Geod 90:105–127

    Article  Google Scholar 

  • Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Ivanic J, Ruedenberg K (1996) Rotation matrices for real spherical harmonics. Direct determination by recursion. J Phys Chem 100:6342–6347

    Article  Google Scholar 

  • Izsak IG (1964) Tesseral harmonics of the geopotential and corrections to station coordinates. J Geophys Res 69:2621–2630

    Article  Google Scholar 

  • Jekeli C, Lee JK, Kwon JH (2007) On the computation and approximation of ultra-high-degree spherical harmonic series. J Geod 81:603–615

    Article  Google Scholar 

  • Kaula WM (1961) Analysis of gravitational and geometric aspects of geodetic utilization of satellites. Geophys J 5:104–133

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell, Waltham MA

  • Kostelec PJ, Rockmore DN (2008) FFTs on the rotation group. J Fourier Anal Appl 14:145–179

    Article  Google Scholar 

  • Lessig C, de Witt T, Fiume E (2012) Efficient and accurate rotation of finite spherical harmonics expansions. J Comput Phys 231:243–250

    Article  Google Scholar 

  • Masters G, Richards-Dinger K (1998) On the efficient calculation of ordinary and generalized spherical harmonics. Geophys J Int 135:307–309

    Article  Google Scholar 

  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406

    Article  Google Scholar 

  • Pinchon D, Hoggan PE (2007) Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes. J Phys A Math Theor 40:1597

    Article  Google Scholar 

  • Rexer M, Hirt C (2015a) Ultra-high degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon. Surv Geophys 36:803–830

    Article  Google Scholar 

  • Rexer M, Hirt C (2015b) Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. J Geod 89:887–909

    Article  Google Scholar 

  • Risbo T (1996) Fourier transform summation of Legendre series and D-functions. J Geod 70:383–396

    Article  Google Scholar 

  • Sneeuw NJ (1992) Representation coefficients and their use in satellite geodesy. Manuscr Geod 17:117–123

    Google Scholar 

  • Stacey FD, Davis PM (2008) Physics of the Earth, 4th edn. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Tajima N (2015) Analytical formula for numerical evaluations of the Wigner rotation matrices at high spin. Phys Rev C 91:014320

    Article  Google Scholar 

  • Thebault E et al (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space 67:79

    Article  Google Scholar 

  • Wagner CA (1983) Direct determination of gravitational harmonics from low-low GRAVSAT data. J Geophys Res 88:10309–10321

    Article  Google Scholar 

  • Wieczorek MA, Meschede M, Oshchepkov I, Sales de Andrade I, heroxbd (2016) SHTOOLS: Version 4.0. Zenodo doi:10.5281/zenodo.206114

  • Wigner EP (1931) Gruppentheorie und ihre anwendungen auf die quantenmechanik der atomspektren. Vieweg Verlag, Braunschweig

    Book  Google Scholar 

  • Winch DE, Ivers DJ, Turner JPR, Stening RJ (2005) Geomangetism and Schmidt quasi-normalization. Geophys J Int 160:487–504

    Article  Google Scholar 

  • Wittwer T, Klees R, Seitz K, Heck B (2008) Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. J Geod 82:223–229

    Article  Google Scholar 

  • Wolfram S (2003) The mathematica book, 5th edn. Wolfram Research Inc/Cambridge Univ Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The author appreciates valuable suggestions and fruitful comments by Dr. Markus Antoni and two anonymous referees to improve the readability and quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, T. Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order. J Geod 91, 995–1011 (2017). https://doi.org/10.1007/s00190-017-1004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1004-3

Keywords

Navigation