Skip to main content
Log in

Improving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The very long baseline interferometry (VLBI) Intensive sessions are typically 1-h and single-baseline VLBI sessions, specifically designed to yield low-latency estimates of UT1-UTC. In this work, we investigate what accuracy is obtained from these sessions and how it can be improved. In particular, we study the modeling of the troposphere in the data analysis. The impact of including external information on the zenith wet delays (ZWD) and tropospheric gradients from GPS or numerical weather prediction models is studied. Additionally, we test estimating tropospheric gradients in the data analysis, which is normally not done. To evaluate the results, we compared the UT1-UTC values from the Intensives to those from simultaneous 24-h VLBI session. Furthermore, we calculated length of day (LOD) estimates using the UT1-UTC values from consecutive Intensives and compared these to the LOD estimated by GPS. We find that there is not much benefit in using external ZWD; however, including external information on the gradients improves the agreement with the reference data. If gradients are estimated in the data analysis, and appropriate constraints are applied, the WRMS difference w.r.t. UT1-UTC from 24-h sessions is reduced by 5% and the WRMS difference w.r.t. the LOD from GPS by up to 12%. The best agreement between Intensives and the reference time series is obtained when using both external gradients from GPS and additionally estimating gradients in the data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://itrf.ign.fr/ITRF_solutions/2014/.

  2. ftp://maia.usno.navy.mil/ser7/finals.daily.

References

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J Geophys Res 111(B02):406. doi:10.1029/2005JB003629

    Google Scholar 

  • Böhm J, Hobiger T, Ichikawa R, Kondo T, Koyama Y, Pany A, Schuh H, Teke K (2010) Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI intensive sessions on the baseline Wettzell–Tsukuba. J Geod 84:319–325. doi:10.1007/s00190-010-0370-x

    Article  Google Scholar 

  • Böhm J, Urquhart L, Steigenberger P, Heinkelmann R, Nafisi V, Schuh H (2013) A priori gradients in the analysis of space geodetic observations. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences, IAG symposia, vol 138. Springer, New York, pp 105–109. doi:10.1007/978-3-642-32998-2_17

    Chapter  Google Scholar 

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software. In: Kenyon S, Pacino MC, Marti U (eds) IAG scientific assembly 2009, Springer, Buenos Aires, Argentina, No. 136 in International Association of Geodesy Symposia, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20,489–20,502. doi:10.1029/97JB01739

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deng Z, Schöne T, Gendt G (2016) Status of the TIGA tide gauge data reprocessing at GFZ. In: Proceedings of the IAG scientific assembly, Potsdam, Germany. doi:10.1007/1345_2015_156

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(58):1–16. doi:10.1088/0004-6256/150/2/58

    Google Scholar 

  • Gipson J, Baver K (2016) Improvement of the IVS-INT01 sessions by source selection: development and evaluation of the maximal source strategy. J Geod 90(3):287–303. doi:10.1007/s00190-015-0873-6

    Article  Google Scholar 

  • Heinkelmann R, Nilsson T, Karbon M, Liu L, Lu C, Mora-Diaz JA, Parselia E, Raposo-Pulido V, Soja B, Xu M, Schuh H (2014) The GFZ VLBI solution—characteristics and first results. In: Behrend D, Baver KD, Armstrong K (eds) Proceedings of the eight IVS general meeting: VGOS—the new VLBI network. Science Press, Shanghai. pp 330–334. ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2014/pdf/071_Heinkelmann_etal

  • Luzum B, Nothnagel A (2010) Improved UT1 predictions through low-latency VLBI observations. J Geod 84:399–402. doi:10.1007/s00190-010-0372-8

    Article  Google Scholar 

  • Malkin Z (2011) The impact of celestial pole offset modelling on VLBI UT1 intensive results. J Geod 85(9):617–622. doi:10.1007/s00190-011-0468-9

    Article  Google Scholar 

  • Malkin Z (2013) Impact of seasonal station motions on VLBI UT1 intensives results. J Geod 87(6):505–514. doi:10.1007/s00190-013-0624-5

    Article  Google Scholar 

  • Nafisi V, Madzak M, Böhm J, Ardalan AA, Schuh H (2012) Ray-traced tropospheric delays in VLBI analysis. Radio Sci 47(2):RS2020. doi:10.1029/2011RS004918

    Article  Google Scholar 

  • Nilsson T, Böhm J, Schuh H (2011) Universal time from VLBI single-baseline observations during CONT08. J Geod 85(7):415–423. doi:10.1007/s00190-010-0436-9

    Article  Google Scholar 

  • Nilsson T, Böhm J, Wijaya DD, Tresch A, Nafisi V, Schuh H (2013) Path delays in the neutral atmosphere. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Heidelberg, pp 73–136. doi:10.1007/978-3-642-36932-2_3

    Chapter  Google Scholar 

  • Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(136):1–9. doi:10.1186/s40623-015-0307-y

    Google Scholar 

  • Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res 115:B03,407. doi:10.1029/2009JB006579

    Article  Google Scholar 

  • Nilsson T, Soja B, Karbon M, Heinkelmann R, Liu L, Lu C, Mora-Diaz JA, Raposo-Pulido V, Xu M, Schuh H (2014) Tropospheric modeling for the intensive sessions. In: Behrend D, Baver KD, Armstrong K (eds) Proceedings of the eight IVS general meeting: VGOS—the new VLBI network. Science Press, Shanghai, pp 288–292. ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2014/pdf/062_Nilsson_etal

  • Nothnagel A et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry, GFZ Data Services. doi:10.5880/GFZ.1.1.2015.002

  • Nothnagel A, Schnell D (2008) The impact of errors in polar motion and nutation on UT1 determinations from VLBI intensive observations. J Geod 82:863–869. doi:10.1007/s00190-008-0212-2

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Conventions (2010) IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in VLBI observations. J Geophys Res 109(B03):405. doi:10.1029/2003JB002500

    Google Scholar 

  • Robertson DS, Carter WE, Campbell J, Schuh H (1985) Daily earth rotation determinations from IRIS very long baseline interferometry. Nature 316:424–427

    Article  Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Soja B, Nilsson T, Karbon M, Zus F, Dick G, Deng Z, Wickert J, Heinkelmann R, Schuh H (2015) Tropospheric delay determination by Kalman filtering VLBI data. Earth Planets Space 67(144):1–16. doi:10.1186/s40623-015-0293-0

    Google Scholar 

  • Teke K, Nilsson T, Böhm J, Hobiger T, Steigenberger P, Garcia-Espada S, Haas R, Willis P (2013) Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J Geod 87(10–12):981–1001. doi:10.1007/s00190-013-0662-z

    Article  Google Scholar 

  • Teke K, Böhm J, Madzak M, Kwak Y, Steigenberger P (2015) GNSS zenith delays and gradients in the analysis of VLBI Intensive sessions. Adv Space Res 56(8):16671676. doi:10.1016/j.asr.2015.07.032

  • Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Sci 9(10):803–807

    Article  Google Scholar 

  • Zus F, Bender M, Deng Z, Dick G, Heise S, Shang-Guan M, Wickert J (2012) A methodology to compute GPS slant total delays in a numerical weather model. Radio Sci. doi:10.1029/2011RS004853

    Google Scholar 

  • Zus F, Dick G, Douša J, Heise S, Wickert J (2014) The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Sci 49(3):207–216. doi:10.1002/2013RS005280

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the IVS for providing the data from the Intensive sessions (Nothnagel et al. 2015), the IGS for providing the GPS data and the LOD series, and Jan Douša for providing the gradients. We are also grateful to the three anonymous reviewers for their comments which helped us in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nilsson.

Additional information

This work was supported by the Austrian Science Fund (FWF), project number P24187-N21 (VLBI-ART).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsson, T., Soja, B., Balidakis, K. et al. Improving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates. J Geod 91, 857–866 (2017). https://doi.org/10.1007/s00190-016-0985-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0985-7

Keywords

Navigation