Skip to main content
Log in

Spherical gravitational curvature boundary-value problem

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Values of scalar, vector and second-order tensor parameters of the Earth’s gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth’s gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth’s gravitational field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: Tenth printing, National Bureau of Standards, Department of Commerce, Washington, DC

  • Ardalan AA, Safari A (2005) Global height datum unification: a new approach in gravity potential space. J Geod 79:512–523

    Article  Google Scholar 

  • Ardestani VE, Martinec Z (2001) Ellipsoidal Stokes boundary-value problem with ellipsoidal corrections in the boundary condition. Stud Geophys Geod 45:109–126

    Article  Google Scholar 

  • Balakin AB, Daishev RA, Murzakhanov ZG, Skochilov AF (1997) Laser-interferometric detector of the first, second and third derivatives of the potential of the Earth gravitational field. Izv Vysshikh Uchebnykh Zaved Seriya Geol Razved 1:101–107

    Google Scholar 

  • Bjerhammar A, Svensson L (1983) On the geodetic boundary value problem for a fixed boundary surface—a satellite approach. Bull Géod 57:382–393

    Article  Google Scholar 

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geod 79:300–330

    Article  Google Scholar 

  • Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA—novelties and benefit. In: Geotechnologien, science report No. 17, Potsdam, pp 134–139

  • Brovelli M, Sansó F (1990) Gradiometry: the study of the \(V_{yy}\) component in the BVP approach. Manuscr Geod 15:240–248

    Google Scholar 

  • Casotto S, Fantino E (2009) Gravitational gradients by tensor analysis with application to spherical coordinates. J Geod 83:621–634

    Article  Google Scholar 

  • Chauvenet W (1875) A treatise on plane and spherical trigonometry, 9th edn. JB Lippincott, Philadelphia

  • Claessens SJ (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD. Dissertation, Curtin University of Technology, Perth

  • DiFrancesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry—today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13–18 September 2009, Swaziland, pp 80–83

  • ESA (1999) Gravity field and steady-state ocean circulation mission. In: Reports for mission selection, ESA SP-1233(1)—the four candidate earth explorer core missions, ESA Publication Division, ESTEC, Noordwijk

  • Fei Z (2000) Refinements of geodetic boundary value problem solutions. PhD Thesis, Department of Geomatics Engineering, University of Calgary

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. Pure and applied mathematics, A series of monographs and textbooks, Taylor & Francis, New York 452 p

  • Freeden W, Michel V (2001) Basic aspects of geopotential field approximation from satellite-to-satellite tracking data. Math Methods Appl Sci 24:827–846

    Article  Google Scholar 

  • Freeden W, Nutz H (2011) Satellite gravity gradiometry as tensorial inverse problem. Int J Geomath 2:177–218

    Article  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin

  • Freeden W, Gervens T, Schreiner M (1994) Tensor spherical harmonics and tensor spherical splines. Manuscr Geod 19:70–100

    Google Scholar 

  • Freeden W, Glockner O, Thalhammer M (1999) Multiscale gravitational field recovery from GPS-satellite-to-satellite tracking. Stud Geophys Geod 43:229–264

    Article  Google Scholar 

  • Freeden W, Michel V, Nutz H (2002) Satellite-to-satellite and satellite gravity gradiometry (advanced techniques for high-resolution geopotential field determination). J Eng Math 43:19–56

    Article  Google Scholar 

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem—vertical deflections and geoid undulations—the completed Meissl diagram. J Geod 75:363–390

    Article  Google Scholar 

  • Grafarend EW, Heck B, Knickmeyer EH (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Géod 59:11–32

    Article  Google Scholar 

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integral on the sphere using 1D-FFT and a comparison with existing methods for Stokes integral. Manuscr Geod 18:227–241

    Google Scholar 

  • Heck B (1989) On the non-linear geodetic boundary value problem for a fixed boundary surface. Bull Géod 63:57–67

    Article  Google Scholar 

  • Heck B, Seitz K (2003) Solution of the linearized geodetic boundary value problem for an ellipsoidal boundary to order \(e^3\). J Geod 77:182–192

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

  • Holota P (1983a) The altimetry gravimetry boundary value problem I: linearization, Friedrich’s inequality. Boll Geod Sci Affini 42:14–32

    Google Scholar 

  • Holota P (1983b) The altimetry gravimetry boundary value problem II: weak solution, V-ellipticity. Boll Geod Sci Affini 42:70–84

    Google Scholar 

  • Holota P (1995) Boundary and initial value problems in airborne gravimetry. In: Proceedings of IAG symposium on airborne gravity field determination, IUGG XXI general assembly, Boulder, 2–14 July 1995. Special report No. 60010, Department of Geomatics Engineering, University of Calgary, Calgary, pp 67–71

  • Holota P, Nesvadba O (2014) Reproducing kernel and Neumann’s function for the exterior of an oblate ellipsoid of revolution: application in gravity field studies. Stud Geophys Geod 58:505–535

    Article  Google Scholar 

  • Hotine M (1969) Mathematical geodesy. In: ESSA monograph No. 2, US Department of Commerce, Washington, DC

  • Hörmander L (1976) The boundary problems of physical geodesy. Arch Rational Mech Anal 62:1–52

    Article  Google Scholar 

  • Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical evaluation of Stokes’s integral. Stud Geophys Geod 44:374–380

    Article  Google Scholar 

  • Jekeli C (2007) Potential theory and static gravity field of the Earth. In: Schubert G (ed) Treatise on geophysics, vol 3. Elsevier, Oxford, pp 11–42

    Chapter  Google Scholar 

  • Keller W (1996) On the scalar fixed altimetry gravimetry boundary value problem of physical geodesy. J Geod 70:459–469

    Google Scholar 

  • Keller W, Hirch M (1994) A boundary value approach to downward continuation. Manuscr Geod 19:101–118

    Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Verlag von Julius Springer, Berlin 384 p

    Book  Google Scholar 

  • Koch KR (1971) Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Z Vermess 96:218–224

    Google Scholar 

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the Earth. Bull Géod 106:467–476

    Article  Google Scholar 

  • Kotsiaros S, Olsen N (2012) The geomagnetic field gradient tensor: properties and parametrization in terms of spherical harmonics. Int J Geomath 3:297–314

    Article  Google Scholar 

  • Lehmann R (1999) Boundary-value problems in the complex world of geodetic measurements. J Geod 73:491–500

    Article  Google Scholar 

  • Lehmann R (2000) Altimetry–gravimetry problems with free vertical datum. J Geod 74:327–334

    Article  Google Scholar 

  • Martinec Z (1997) Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Stud Geophys Geod 41:103–129

    Article  Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49

    Article  Google Scholar 

  • Martinec Z, Grafarend EW (1997) Construction of Green’s function to the Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of revolution. J Geod 71:562–570

    Article  Google Scholar 

  • Mather RS (1973) A solution of the geodetic boundary value problem to order \(e^3\). In: Report No. X-592-73-11, Goddard Space Flight Center, Greenbelt

  • Mazurova EM, Yurkina MI (2011) Use of Green’s function for determining the disturbing potential of an ellipsoidal Earth. Stud Geophys Geod 55:455–464

    Article  Google Scholar 

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. In: Report No. 151, Department of Geodetic Science, The Ohio State University, Columbus

  • Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. The Israel Program for Scientific Translations, Department of Commerce, Washington, DC

  • Moritz H (1967) Kinematical geodesy. In: Report No. 92, Department of Geodetic Science, The Ohio State University, Columbus

  • Moritz H (1989) Advanced physical geodesy, 2nd edn. Herbert Wichmann, Karlsruhe 500 p

    Google Scholar 

  • Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geod 76:269–278

    Article  Google Scholar 

  • Pick M, Pícha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam 538 p

    Google Scholar 

  • Reigber C, Luehr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134

    Article  Google Scholar 

  • Ritter S (1998) The nullfield method for the ellipsoidal Stokes problem. J Geod 72:101–106

    Article  Google Scholar 

  • Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001

  • Rummel R (1975) Downward continuation of gravity information from satellite to satellite tracking or satellite gradiometry in local areas. In: Report No. 221, Department of Geodetic Science, The Ohio State University, Columbus

  • Rummel R (1997) Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Sansó F, Rummel R (eds) Lecture notes in earth sciences, vol 65., Geodetic boundary value problems in view of the one centimeter geoidSpringer, Berlin, pp 359–404

  • Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscr Geod 20:379–385

    Google Scholar 

  • Rummel R, Teunissen P, van Gelderen M (1989) Uniquely and overdetermined geodetic boundary value problems by least squares. Bull Géod 63:1–33

  • Sacerdote F, Sansó F (1983) A contribution to the analysis of altimetry gravimetry problems. Bull Géod 57:183–201

    Article  Google Scholar 

  • Safari A, Ardalan AA, Grafarend EW (2005) A new ellipsoidal gravimetric, satellite altimetry and astronomic boundary value problem, a case study: The geoid of Iran. J Geodyn 39:545–568

    Article  Google Scholar 

  • Sansó F (1978) Molodensky’s problem in gravity space: a review of the first results. Bull Géod 52:59–70

    Article  Google Scholar 

  • Sansó F (1995) The long road from the measurements to boundary value problems of physical geodesy. Manuscr Geod 20:326–344

    Google Scholar 

  • Schwarz KP, Li Z (1997) An introduction to airborne gravimetry and its boundary value problems. In: Sansó F, Rummel R (eds) Lecture notes in earth sciences, vol 65., Geodetic boundary value problems in view of the one centimeter geoidSpringer, Berlin, pp 312–358

    Google Scholar 

  • Simmonds JG (1994) A brief on tensor analysis, 2nd edn., Undergraduate texts in mathematics, Springer, New York 112 p

  • Sjöberg LE (2003) Ellipsoidal corrections to order \(e^2\) of geopotential coefficients and Stokes’ formula. J Geod 77:139–147

    Article  Google Scholar 

  • Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Philos Soc 8:672–695

    Google Scholar 

  • Svensson SL (1983) Solution of the altimetry–gravimetry problem. Bull Géod 57:332–353

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607

  • Thong NC (1993) Untersuchung zur Lösungen der fixen gravimetrischen Randwertprobleme mittels sphäroidaler und Greenscher Funktionen. In: Deutsche Geodätische Kommission, Reihe C, Nr. 399, München

  • Tóth G (2003) The Eötvös spherical horizontal gradiometric boundary value problem—gravity anomalies from gravity gradients of the torsion balance. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd Meeting of the international gravity and geoid commission, 26–30 August 2002. Ziti Publishing, Thessaloniki, pp 102–107

  • Tóth G (2005) The gradiometric-geodynamic boundary value problem. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer, Berlin, pp 352–357

    Chapter  Google Scholar 

  • van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geod 75:1–11

    Article  Google Scholar 

  • Witsch KJ (1985) On a free boundary value problem of physical geodesy, I (uniqueness). Math Methods Appl Sci 7:269–289

    Article  Google Scholar 

  • Witsch KJ (1986) On a free boundary value problem of physical geodesy, II (existence). Math Methods Appl Sci 8:1–22

    Article  Google Scholar 

  • Yu J, Jekeli C, Zhu M (2003) Analytical solutions of the Dirichlet and Neumann boundary-value problems with an ellipsoidal boundary. J Geod 76:653–667

    Article  Google Scholar 

  • Zhu Z (1981) The Stokes problem for the ellipsoid using ellipsoidal kernels. In: Report No. 319, Department of Geodetic Science and Surveying, The Ohio State University, Columbus

Download references

Acknowledgments

The authors were supported by the project No. GA15-08045S of the Czech Science Foundation. Thoughtful and constructive comments of the three anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief J. Kusche and the responsible editor W. Keller for handling our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 21 KB)

Supplementary material 2 (mpeg 11608 KB)

Appendices

Appendix 1: Differential operators for the gravitational curvatures

To obtain the gravitational curvatures from the gravitational potential, some differential operators are necessary. The ten differential operators in terms of the spherical geocentric coordinates \((r,\Omega )\) read as follows (Tóth 2005):

$$\begin{aligned} \mathcal{{D}}^{xxx}= & {} - \frac{1}{r^2} \left( \frac{2}{r} \frac{\partial }{\partial \varphi } - 3 \frac{\partial ^2}{\partial r \partial \varphi } - \frac{1}{r} \frac{\partial ^3}{\partial \varphi ^3}\right) ,\end{aligned}$$
(62)
$$\begin{aligned} \mathcal{{D}}^{xxy}= & {} - \frac{1}{r^2 \cos \varphi } \left( \frac{2 \tan ^2 \varphi }{r} \frac{\partial }{\partial \lambda } + \frac{\partial ^2}{\partial r \partial \lambda } + \frac{2 \tan \varphi }{r} \frac{\partial ^2}{\partial \varphi \partial \lambda } \right. \nonumber \\&\left. + \frac{1}{r} \frac{\partial ^3}{\partial \varphi ^2 \partial \lambda }\right) ,\end{aligned}$$
(63)
$$\begin{aligned} \mathcal{{D}}^{xxz}= & {} - \frac{1}{r} \left( \frac{1}{r} \frac{\partial }{\partial r} - \frac{\partial ^2}{\partial r^2} + \frac{2}{r^2} \frac{\partial ^2}{\partial \varphi ^2} - \frac{1}{r} \frac{\partial ^3}{\partial r \partial \varphi ^2}\right) ,\end{aligned}$$
(64)
$$\begin{aligned} \mathcal{{D}}^{xyy}= & {} - \frac{1}{r^2} \left( \frac{1}{r \cos ^2 \varphi } \frac{\partial }{\partial \varphi } - \frac{\partial ^2}{\partial r \partial \varphi } + \frac{\tan \varphi }{r} \frac{\partial ^2}{\partial \varphi ^2} \right. \nonumber \\&\left. -\, \frac{2 \tan \varphi }{r \cos ^2 \varphi } \frac{\partial ^2}{\partial \lambda ^2} - \frac{1}{r \cos ^2 \varphi } \frac{\partial ^3}{\partial \varphi \partial \lambda ^2}\right) ,\end{aligned}$$
(65)
$$\begin{aligned} \mathcal{{D}}^{xyz}= & {} \frac{1}{r^2 \cos \varphi } \Big (\frac{2 \tan \varphi }{r} \frac{\partial }{\partial \lambda } - \tan \varphi \frac{\partial ^2}{\partial r \partial \lambda }\nonumber \\&\quad \quad + \frac{2}{r} \frac{\partial ^2}{\partial \varphi \partial \lambda } - \frac{\partial ^3}{\partial r \partial \varphi \partial \lambda } \Big ),\end{aligned}$$
(66)
$$\begin{aligned} \mathcal{{D}}^{xzz}= & {} \frac{1}{r} \left( \frac{2}{r^2} \frac{\partial }{\partial \varphi } - \frac{2}{r} \frac{\partial ^2}{\partial r \partial \varphi } + \frac{\partial ^3}{\partial r^2 \partial \varphi } \right) ,\end{aligned}$$
(67)
$$\begin{aligned} \mathcal{{D}}^{yyy}= & {} \frac{1}{r^2 \cos \varphi } \left( \frac{2}{r \cos ^2 \varphi } \frac{\partial }{\partial \lambda } - 3 \frac{\partial ^2}{\partial r \partial \lambda } + \frac{3 \tan \varphi }{r} \frac{\partial ^2}{\partial \varphi \partial \lambda } \right. \nonumber \\&\left. - \frac{1}{r \cos ^2 \varphi } \frac{\partial ^3}{\partial \lambda ^3}\right) , \end{aligned}$$
(68)
$$\begin{aligned} \mathcal{{D}}^{yyz}= & {} - \frac{1}{r} \bigg (\frac{1}{r} \frac{\partial }{\partial r} - \frac{2 \tan \varphi }{r^2} \frac{\partial }{\partial \varphi } - \frac{\partial ^2}{\partial r^2} + \frac{\tan \varphi }{r} \frac{\partial ^2}{\partial r \partial \varphi } \nonumber \\&+\, \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial ^2}{\partial \lambda ^2}-\ \frac{1}{r \cos ^2 \varphi } \frac{\partial ^3}{\partial r \partial \lambda ^2} \bigg ),\end{aligned}$$
(69)
$$\begin{aligned} \mathcal{{D}}^{yzz}= & {} - \frac{1}{r \cos \varphi } \left( \frac{2}{r^2} \frac{\partial }{\partial \lambda } - \frac{2}{r} \frac{\partial ^2}{\partial r \partial \lambda } + \frac{\partial ^3}{\partial r^2 \partial \lambda } \right) ,\end{aligned}$$
(70)
$$\begin{aligned} \mathcal{{D}}^{zzz}= & {} \frac{\partial ^3}{\partial r^3}. \end{aligned}$$
(71)

The superscripts on the left-hand sides of Eqs. (62)–(71) indicate the corresponding gravitational curvatures which are obtained by applying the differential operators.

Appendix 2: Formulas for the variable u and the backward azimuth \(\alpha '\)

We summarize now equations for numerical evaluation of cosine of the spherical distance u and of the backward azimuth \(\alpha '\) given the spherical coordinates of the computational point and the integration element are known. The formulas read as follows:

$$\begin{aligned}&u = \cos \psi \ = \sin \varphi \sin \varphi '\ +\ \cos \varphi \cos \varphi ' \cos (\ \lambda ' - \lambda \ ),\nonumber \\ \end{aligned}$$
(72)
$$\begin{aligned}&\cos \alpha ' = \frac{\sin \varphi \cos \varphi ' - \cos \varphi \sin \varphi ' \cos (\ \lambda ' - \lambda \ )}{\sqrt{1 - u^2}},\end{aligned}$$
(73)
$$\begin{aligned}&\sin \alpha ' = -\ \frac{\cos \varphi \sin (\ \lambda ' - \lambda \ )}{\sqrt{1 - u^2}},\end{aligned}$$
(74)
$$\begin{aligned}&\cos 2 \alpha ' = 2\ \cos ^2 \alpha '\ -\ 1,\end{aligned}$$
(75)
$$\begin{aligned}&\sin 2 \alpha ' = 2\ \cos \alpha ' \sin \alpha ',\end{aligned}$$
(76)
$$\begin{aligned}&\cos 3 \alpha ' = \cos \alpha '\ (\ \cos ^2 \alpha ' - 3 \sin ^2 \alpha '\ ),\end{aligned}$$
(77)
$$\begin{aligned}&\sin 3 \alpha ' = - \sin \alpha '\ (\ \sin ^2 \alpha ' - 3 \cos ^2 \alpha '\ ). \end{aligned}$$
(78)

Equations (72)–(74) can be derived from the cosine, sine-cosine and sine rules of spherical trigonometry (see, e.g., Chauvenet 1875, pp. 151–154). Equations (75)–(78) follow from the multiple-angle formulas for trigonometric functions (see, e.g., Abramowitz and Stegun 1972, p. 72). A detailed derivation for cosine and sine of the backward azimuth \(\alpha '\) was provided in Grafarend (2001, Appendix A). However, his resulting expressions, see (ibid., Eqs. A24 and A25), differ by the sign from those of Eqs. (73) and (74). Both versions of expressions for cosine and sine of the backward azimuth \(\alpha '\) were empirically tested. The numerical testing proved correctness of Eqs. (73) and (74) given in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Novák, P. Spherical gravitational curvature boundary-value problem. J Geod 90, 727–739 (2016). https://doi.org/10.1007/s00190-016-0905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0905-x

Keywords

Navigation