Skip to main content
Log in

IVS contribution to ITRF2014

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Every few years the International Terrestrial Reference System (ITRS) Center of the International Earth Rotation and Reference Systems Service (IERS) decides to generate a new version of the International Terrestrial Reference Frame (ITRF). For the upcoming ITRF2014 the official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) comprises 5796 combined sessions in SINEX file format from 1979.6 to 2015.0 containing 158 stations, overall. Nine AC contributions were included in the combination process, using five different software packages. Station coordinate time series of the combined solution show an overall repeatability of 3.3 mm for the north, 4.3 mm for the east and 7.5 mm for the height component over all stations. The minimum repeatabilities are 1.5 mm for north, 2.1 mm for east and 2.9 mm for height. One of the important differences between the IVS contribution to the ITRF2014 and the routine IVS combination is the omission of the correction for non-tidal atmospheric pressure loading (NTAL). Comparisons between the amplitudes of the annual signals derived by the VLBI observations and the annual signals from an NTAL model show that for some stations, NTAL has a high impact on station height variation. For other stations, the effect of NTAL is low. Occasionally other loading effects have a higher influence (e.g. continental water storage loading). External comparisons of the scale parameter between the VTRF2014 (a TRF based on combined VLBI solutions), DTRF2008 (DGFI-TUM realization of ITRS) and ITRF2008 revealed a significant difference in the scale. A scale difference of 0.11 ppb (i.e. 0.7 mm on the Earth’s surface) has been detected between the VTRF2014 and the DTRF2008, and a scale difference of 0.44 ppb (i.e. 2.8 mm on the Earth’s surface) between the VTRF2014 and ITRF2008. Internal comparisons between the EOP of the combined solution and the individual solutions from the AC contributions show a WRMS in X- and Y-Pole between 40 and 100 \(\upmu \)as and for dUT1 between 5 and 15 \(\upmu \)s. External comparisons with respect to the IERS-08-C04 series show a WRMS of 132 and 143 \(\upmu \)as for X- and Y-Pole, respectively, and 13 \(\upmu \)s for dUT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. IERS Message No. 225 in http://www.iers.org/Messages.

  2. ftp://ivs.bkg.bund.de/pub/vlbi/ITRF2014/daily_sinex/ivs2014a/.

  3. ftp://ivsopar.obspm.fr/vlbi/ITRF2014/daily_sinex/ivs2014a/.

  4. ftp://cddis.gsfc.nasa.gov/pub/vlbi/ITRF2014/daily_sinex/ivs2014a/.

  5. ftp://ivs.bkg.bund.de/pub/vlbi/ivscontrol/.

  6. http://www.iers.org/sinex.

  7. http://lupus.gsfc.nasa.gov/files_IVS-AC/ITRF2013_checklist_v2014Feb07.pdf.

  8. ftp://ivs.bkg.bund.de/pub/vlbi/ITRF2014/daily_sinex/ivs2014a/.

  9. http://vlbi.geo.tuwien.ac.at/.

  10. http://lacerta.gsfc.nasa.gov/mk5/help/dbngs_format.txt.

  11. http://ccivs.bkg.bund.de/.

  12. Description and models: http://ggosatm.hg.tuwien.ac.at/loading.html.

  13. http://ccivs.bkg.bund.de/.

  14. http://itrf.ign.fr/ITRF_solutions/2014/.

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bachmann S, Lösler M (2012) IVS combination center at BKG—robust outlier detection and weighting strategies. In: Behrend D, Baver K (eds) IVS 2012 general meeting proceedings, NASA/CP-2012-217504, pp 261–265

  • Behrend D, Böhm J, Charlot P, Clark T, Corey B, Gipson J, Haas R, Koyama Y, MacMillan D, Malkin Z, Niell A, Nilsson T, Petrachenko B, Rogers A, Tuccari G, Wresnik J (2008) Recent progress in the VLBI2010 development. In: Sideris MG (ed) Observing our changing Earth, international association of geodesy symposia, vol 133, Springer, Heidelberg, pp 833–840. doi:10.1007/978-3-540-85426-5_96

  • Bizouard C, Gambis D (2010) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. In: Technical report, IERS Earth Orientation Product Centre. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide

  • Böckmann S, Artz T, Nothnagel A (2010) Correlations between the contribution of individual IVS analysis centers. In: Behrend D, Baver KD (eds) IVS 2010 general meeting proceedings, NASA/CP-2010-215864, pp 222–226

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi:10.1007/s00190-009-0357-7

  • Böckmann S, Artz T, Nothnagel A, Tesmer V (2010) International VLBI service for geodesy and astrometry: Earth orientation parameter combination methodology and quality of the combined products. J Geophys Res 115(B04404). doi:10.1029/2009JB006465

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111(B02406). doi:10.1029/2005JB003629

  • Böhm J, Heinkelmann R, Mendes Cerveira PJ, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geod 83(11):1107–1113. doi:10.1007/s00190-009-0329-y

    Article  Google Scholar 

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) Geodesy for planet Earth—the new Vienna VLBI software VieVS. International association of geodesy symposia, vol 136, chap 7. Springer, Berlin, pp 1007–1011. doi:10.1007/978-3-642-20338-1

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502. doi:10.1029/97JB01739

  • Davis JL, Herring T, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Egbert G, Bennett A, Foreman M (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

  • Fey AL, Gordon D, Jacobs CS (2009) The second realization of the international celestial reference frame by very long baseline interferometry (IERS technical note no. 35). Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main (ISBN 978-3-89888-918-6)

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. doi:10.1088/0004-6256/150/2/58

    Article  Google Scholar 

  • Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg Vermess Nachr 11–12:446–453

    Google Scholar 

  • Heinkelmann R, Bertelmann R, Klump J, Schuh H (2013) Make it citable: data in IVS. In: 21st meeting of the European VLBI group for geodesy and astrometry (EVGA). http://evga.fgi.fi/sites/default/files/u3/s3_talk5_Heinkelmann_Make_it_citable

  • Jäger R, Müller T, Saler H, Schwäble R (2005) Klassische und robuste Ausgleichungsverfahren. Herbert Wichmann-Verlag, Heidelberg. ISBN 978-3-87907-370-2

    Google Scholar 

  • Krásná H, Malkin Z, Böhm J (2015) Non-linear VLBI station motion and their impact on the celestial reference frame and Earth orientation parameters. J Geod 89(10):1019–1033. doi:10.1007/s00190-015-0830-4

    Article  Google Scholar 

  • Kutterer H, Heinkelmann R, Tesmer V (2003) Robust outlier detection in VLBI data analysis. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th EVGA working meeting. Verlag des Bundesamts für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, pp 247–256

    Google Scholar 

  • Lösler M (2011) Robust parameter estimation of the spatial Helmert-transformation (in German). Allg Vermess Nachr 118(5):179–186

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Franci O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044. doi:10.1029/95GL00887

    Article  Google Scholar 

  • MacMillan DS, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24(4):453–456. doi:10.1029/97GL00143

    Article  Google Scholar 

  • Mathews PM, Dehant V, Gipson J (1997) Tidal station displacements. J Geophys Res 102(B9):20469–20477. doi:10.1029/97JB01515

  • McCarthy D, Petit G (2003) IERS conventions 2003. IERS technical note no. 32. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main (ISBN 3-89888-884-3)

  • Neitzel F (2003) Identifizierung konsistenter Datengruppen am Beispiel der Kongruenzuntersuchung geodätischer Netze. PhD thesis, Bayer. Akademie d. Wissenschaften (ISBN 978-3769650044)

  • Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83:787–792. doi:10.1007/s00190-008-0284-z

    Article  Google Scholar 

  • Nothnagel A (2015) The IVS data input to ITRF2014. In: International VLBI service for geodesy and astrometry, GFZ data services. International VLBI service for geodesy and astrometry (IVS). doi:10.5880/GFZ.1.1.2015.002

  • Petit G, Luzum B (2010) IERS conventions 2010. IERS technical note no. 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main (ISBN 978-3-89888-989-6)

  • Roggenbuck O, Thaller D, Engelhardt G, Mareyen M, Franke S, Dach RPS (2015) Loading-induced deformation due to atmosphere, ocean and hydrology: model comparisons and the impact on global SLR, VLBI and GNSS solutions. In: International association of geodesy symposia, vol 146, Springer, Berlin (in press). doi:10.1007/1345_2015_214

  • Rousseeuw P (1984) Least median of squares regression. J Am Stat Assoc 79:871–880. doi:10.1080/01621459.1984.10477105

    Article  Google Scholar 

  • Rousseeuw P, Leroy M (2003) Robust regression and outlier detection. Wiley, New York (ISBN 978-0471488552)

  • Salvini D (2008) Konzeption und Entwicklung neuer interaktiver multimedialer Lern- und Arbeitsmethoden für die geodätische Ausgleichungsrechnung. PhD thesis, ETH Zürich, Institut für Geodäsie und Photogrammetrie, nr. 17968 (ISBN 978-3-906467-81-8)

  • Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):379–387. doi:10.1007/s00190-006-0131-z

    Article  Google Scholar 

  • Schubert S, Rood R, Pfaendtner J (1993) An assimilated dataset for Earth science applications. Bull Am Meteorol Soc 74(12):2331–2342

    Article  Google Scholar 

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:10.1007/s00190-012-0567-2

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, Rothacher M, Böhm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83(10):973–988. doi:10.1007/s00190-009-0316-3

    Article  Google Scholar 

  • Thomas JB (1972) An analysis of long baseline radio interferometry. In: JPL technical report 32-1526, vol VII, pp 37–50

  • Thomas JB (1972) An analysis of long baseline radio interferometry, Part II. In: JPL technical report 32-1526, vol VIII, pp 29–38

  • Thomas JB (1973) An analysis of long baseline radio interferometry, Part III. In: JPL technical report 32-1526, vol XVI, pp 47–64

  • Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of very long baseline interferometry to ITRF2005. J Geod 81(6–8):553–564. doi:10.1007/s00190-006-0117-x

    Article  Google Scholar 

Download references

Acknowledgments

The VLBI intra-technique combination is the last link of a process chain starting with the planning and realization of the VLBI observations. We want to thank everyone who contributes to this process, especially the IVS Analysis Centers who provided the input data for the combination process. Furthermore, we want to thank the responsible persons at the IERS ITRS Combination Centers at DGFI-TUM, IGN, and JPL who provided valuable remarks on the combined sessions. The support by the DFG research unit FOR 1503 for the studies on atmospheric loading is acknowledged, too. Finally, we want to thank R. Bertelmann, R. Heinkelmann and A. Nothnagel for the work on introducing the data DOI for the VTRF, to pay tribute to all contributors and to provide a reference for the wealth of VLBI data used in the VTRF combination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Bachmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, S., Thaller, D., Roggenbuck, O. et al. IVS contribution to ITRF2014. J Geod 90, 631–654 (2016). https://doi.org/10.1007/s00190-016-0899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0899-4

Keywords

Navigation