Skip to main content
Log in

Optimized strategy for the calibration of superconducting gravimeters at the one per mille level

  • Short Note
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper reports on different sources of errors that occur in the calibration process of a superconducting gravimeter (SG), determined by comparison with a ballistic absolute gravimeter (AG); some of them have never been discussed in the literature. We then provide methods to mitigate the impact of those errors, to achieve a robust calibration estimate at the level. We demonstrate that a standard deviation at the level of can be reached within 48 h by measuring at spring tides and by increasing the AG sampling rate. This is much shorter than what is classically reported in previous empirical studies. Measuring more than 5 days around a tidal extreme does not improve the precision in the calibration factor significantly, as the variation in the error as a function of \(1/\sqrt{N} \) does not apply, considering the decrease in signal amplitude due to the tidal modulation. However, we investigate the precision improvement up to 120 days, which can be useful if an AG is run continuously: at mid-latitude it would require 21 days to ensure a calibration factor at the level with a 99.7 % confidence interval. We also show that restricting the AG measurement periods to tidal extrema can reduce instrument demand, while this does not affect the precision on the calibration factor significantly. Then, we quantify the effect of high microseismic noise causing aliasing in the AG time series. We eventually discuss the attenuation bias that might be induced by noisy time series of the SG. When experiments are performed at the level, 7 are needed to ensure that the error in the calibration estimate will be at the 1 per mille level with a 99 % confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achilli V, Baldi P, Casula G, Errani M, Focardi S, Guerzoni M, Palmonari F, Raguni G (1995) A calibration system for superconducting gravimeters. Bull Géod 69:73–80

    Article  Google Scholar 

  • Baker TF, Bos MS (2003) Validating Earth and ocean tide models using tidal gravity measurements. Geophys J Int. doi:10.1046/j.1365-246X.2003.01863.x

    Google Scholar 

  • Banka D, Crossley D (1999) Noise levels of superconducting gravimeters at seismic frequencies. Geophys J Int. doi:10.1046/j.1365-246X.1999.00913.x

    Google Scholar 

  • Crossley D, Hinderer J (2009) A review of the GGP network and scientific challenges. J Geodyn 48:299–304

    Article  Google Scholar 

  • de Angelis M, Bertoldi A, Cacciapuoti L, Giorgini A, Lamporesi G, Prevedelli M, Saccorotti G, Sorrentino F, Tino GM (2009) Precision gravimetry with atomic sensors. Meas Sci Technol. doi:10.1088/0957-0233/20/2/022001

    Google Scholar 

  • Faller JE, Guo YG, Geschwind J, Niebauer TM, Rinker RL, Xue J (1983) The JILA portable absolute gravity apparatus. Bull Inf Bur Grav Int 53:87–97

    Google Scholar 

  • Francis O (1997) Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. Int Ass Geod Symp 117:212–218

    Article  Google Scholar 

  • Francis O, Niebauer TM, Sasagawa G, Klopping F, Gschwind J (1998) Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder. Geophys Res Lett 25:1075–1078

    Article  Google Scholar 

  • Francis O, Hendrickx M (2001) Calibration of the LaCoste-Romberg 906 by comparison with the superconducting gravimeter C021 in Membach (Belgium). J Geod Soc Jpn 47(1):16–21

    Google Scholar 

  • Frost C, Thompson S (2000) Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc A 163(2):173–189

    Article  Google Scholar 

  • Hinderer J, Florsch N, Mäkinen J, Legros H, Faller JE (1991) On the calibration of a superconducting gravimeter using absolute gravity measurements. Geophys J Int. doi:10.1111/j.1365-246X.1991.tb03907.x

    Google Scholar 

  • Hinderer J, Amalvict M, Florsch N, Francis O, Makinen J (1998) On the calibration of superconducting gravimeters with the help of absolute gravity measurements. In: Ducarme B, Pâquet P (eds). Proc XIII Int Symp on Earth Tides. Bruxelles, pp 557–564

  • Hinderer J, Crossley D, Warburton RJ (2007), Gravimetric methods—superconducting gravity meters. In: Herring T, Schubert G (eds) Treatise on Geophysics, vol 3, pp 65–122

  • Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ. doi:10.1136/bmj.c2289

    Google Scholar 

  • Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210-a Bayesian approach. Geophys J Int. doi:10.1046/j.1365-246X.2002.01806.x

    Google Scholar 

  • Meurers B (2001) Superconducting gravimetry in geophysical research today. J Geodet Soc of Jpn 47:300–307

    Google Scholar 

  • Meurers B (2002) Aspects of gravimeter calibration by time domain comparison of gravity records. Bull Inf Marées Terr 135:10643–10650

    Google Scholar 

  • Meurers B (2012) Superconducting gravimeter calibration by collocated gravity observations: results from GWR C025. Int J Geophys. doi:10.1155/2012/954271

  • Natrella MG (1963) Experimental statistics. In: National Bureau of standards handbook, vol 91. US Dep Of Commerce

  • Niebauer TM, Sasagawa G, Faller J, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia. doi:10.1088/0026-1394/32/3/004

    Google Scholar 

  • Peterson J (1993) Observations and modeling of seismic background noise. In: US Geol Surv Rep. Albuquerque, pp 93–322

  • Richter B, Wilmes H, Nowak I (1995) The Frankfurt calibration system for relative gravimeters. Metrologia 32:217–223

    Article  Google Scholar 

  • Rosat S, Boy JP, Ferhat G et al (2009) Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48(3–5):360–365

    Article  Google Scholar 

  • Rosat S, Hinderer J (2011) Noise levels of superconducting gravimeters: updated comparison and time stability. Bull Seismol Soc Am. doi:10.1785/0120100217

  • Van Camp M, Wenzel HG, Schott P, Vauterin P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27:37–40

    Article  Google Scholar 

  • Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res. doi:10.1029/2004JB003497

    Google Scholar 

  • Virtanen H, Bilker-Koivula M, Mäkinen J, Näränen J, Raja-Halli A, Ruotsalainen H (2014) Comparison between measurements with the superconducting gravimeter T020 and the absolute gravimeter FG5-221 at Metsähovi, Finland in 2003–2012. Bull Inf Marées Terr 148:11923–11928

    Google Scholar 

Download references

Acknowledgments

The work of OdV is financially supported by the Institut Universitaire de France. We thank the editor Roland Klees and three anonymous reviewers for their fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Van Camp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Camp, M., Meurers, B., de Viron, O. et al. Optimized strategy for the calibration of superconducting gravimeters at the one per mille level. J Geod 90, 91–99 (2016). https://doi.org/10.1007/s00190-015-0856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0856-7

Keywords

Navigation