Skip to main content
Log in

Assessment of high-rate GPS using a single-axis shake table

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The developments in GNSS receiver and antenna technologies, especially the increased sampling rate up to 100 sps, open up the possibility to measure high-rate earthquake ground motions with GNSS. In this paper we focus on the GPS errors in the frequency band above 1 Hz. The dominant error sources are mainly the carrier phase jitter caused by thermal noise and the stress error caused by the dynamics, e.g. antenna motions. To generate a large set of different motions, we used a single-axis shake table, where a GNSS antenna and a strong motion seismometer were mounted with a well-known ground truth. The generated motions were recorded with three different GNSS receivers with sampling rates up to 100 sps and different receiver baseband parameters. The baseband parameters directly dictate the carrier phase jitter and the correlations between subsequent epochs. A narrow loop filter bandwidth keeps the carrier phase jitter on a low level, but has an extreme impact on the receiver response for motions above 1 Hz. The amplitudes above 3 Hz are overestimated up to 50 % or reduced by well over half. The corresponding phase errors are between 30 and 90 degrees. Compared to the GNSS receiver response, the strong motion seismometer measurements do not show any amplitude or phase variations for the frequency range from 1 to 20 Hz. Due to the large errors for dynamic GNSS measurements, it is essential to account for the baseband parameters of the GNSS receivers if high-rate GNSS is to become a valuable tool for seismic displacement measurements above 1 Hz. Fortunately, the receiver response can be corrected by an inverse filter if the baseband parameters are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Avallone A, Marzario M, Cirella A, Piatanesi A, Rovelli A, Di AC, D’Anastasio E, D’Agostino N, Giuliani R, Mattone M (2011) 10 Hz GPS seismology for moderate magnitude earthquakes: the case of the Mw 6.3 L’Aquila (Central Italy) event. J Geophys Res 116:B02305. doi:10.1029/2010JB007834

    Google Scholar 

  • Bilich AL, Cassidy JF, Larson KM (2008) GPS seismology: application to the 2002 Mw 7.9 Denali fault earthquake. Bull Seismol Soc Am 98(2):593–606. doi:10.1785/0120070096

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31:L06604. doi:10.1029/2003GL019150

    Article  Google Scholar 

  • Clinton JF (2004) Modern digital seismology: instrumentation, and small amplitude studies in the engineering world. Ph.D. thesis, California Institute of Technology, Pasadena, CA

  • Curran JT, Lachapelle G, Murphy CC (2012) Digital GNSS PLL design conditioned on thermal and oscillator phase noise. IEEE Trans 48(1):180–196. doi:10.1109/TAES.2012.6129629

    Google Scholar 

  • Deshpande S, Cannon ME (2004) Analysis of the effects of GPS receiver acquisition parameters. In: Proceedings of ION GNSS 2004, 21–24 September, Long Beach, CA

  • Elósegui P, Davis JL, Oberlander D, Baena R, Ekström G (2006) Accuracy of high-rate GPS for seismology. Geophys Res Lett 33:L11308. doi:10.1029/2006GL026065

    Article  Google Scholar 

  • Emore GL, Haase JS, Choi K, Larson KM, Yamagiwa A (2007) Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers. Bull Seism Soc Am 97(2):357–378. doi:10.1785/0120060153

    Article  Google Scholar 

  • Hemesath NB (1980) Performance enhancements of GPS user equipment. Global positioning system, vol I. Institute of Navigation, Washington, pp 103–108

    Google Scholar 

  • Hung H-K, Ruey-Juin R (2013) Surface waves of the 2011 Tohoku earthquake: observations of Taiwans dense high-rate GPS network. J Geophys Res 118:332–345. doi:10.1029/2012JB009689

    Article  Google Scholar 

  • Ji C, Larson KM, Tan Y, Hudnut KW, Choi K (2004) Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett 31:L17608. doi:10.1029/2004GL020448

    Article  Google Scholar 

  • Karras TJ (1965) Equivalent noise bandwidth analysis from transfer functions.NASA TN D-2842, NASA, Washington, DC

  • Kouba J (2003) Measuring seismic waves induced by large earthquakes with GPS. Stud Geophys Geod 47(4):741–755. doi:10.1023/A:1026390618355

    Article  Google Scholar 

  • Kouba J (2005) A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the International GNSS service. Stud Geophys Geod 49(4):463–483. doi:10.1007/s11200-005-0022-4

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Maerten F (2006) Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys Res Lett 33:L07307. doi:10.1029/2005GL025566

    Google Scholar 

  • Langbein J, Bock Y (2004) High-rate real-time GPS network at Parkield: utility for detecting fault slip and seismic displacements. Geophys Res Lett 31:L15S20. doi:10.1029/2003GL019408

    Article  Google Scholar 

  • Langbein J, Murray JR, Snyder HA (2006) Coseismic and initial postseismic deformation from the 2004 Parkield, California, earthquake, observed by Global Positioning System, electronic distance meter, creepmeters, and borehole strainmeters. Bull Seismol Soc Am 96(4B):S304–S320. doi:10.1785/0120050823

    Article  Google Scholar 

  • Langley RB (1997) GPS receiver system noise. GPS World 8(6):40–45

    Google Scholar 

  • Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300(5624):1421–1424. doi:10.1126/science.1084531

    Article  Google Scholar 

  • Larson KM, Miyazaki S (2008) Resolving static offsets from high-rate GPS data: the 2003 Tokachi-Oki earthquake. Earth Planets Space 60(8):801–808

    Article  Google Scholar 

  • Larson KM (2009) GPS Seismol. J Geod 83(3–4):227–233. doi:10.1007/s00190-008-0233-x

    Article  Google Scholar 

  • Miyazaki S, Larson KM, Choi K, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A (2004) Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys Res Lett 31:L21603. doi:10.1029/2004GL021457

    Article  Google Scholar 

  • Miyazaki S, Larson KM (2008) Coseismic and early postseismic slip for the 2003 Tokachi-Oki earthquake sequence inferred from GPS data. Geophys Res Lett 35:L04302. doi:10.1029/2007GL032309

    Article  Google Scholar 

  • Moschas F, Stiros S (2014) PLL bandwidth and noise in 100 Hz GPS measurements. GPS Solut. doi:10.1007/s10291-014-0378-4

  • Munekane H (2012) Coseismic and early postseismic slips associated with the 2011 off the Pacific coast of Tohoku Earthquake sequence: EOF analysis of GPS kinematic time series. Earth Planets Space 64(12):1077–1091

  • Nikolaidis RM, Bock Y, de Jonge PJ, Shearer P, Agnew DC, Van Domselaar M (2001) Seismic wave observations with the global positioning system. J Geophys Res 106(B10):21,897–21,916

    Article  Google Scholar 

  • Ohta Y, Meiano I, Sagiya T, Kimata F, Hirahara K (2006) Large surface wave of the 2004 Sumatra- Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data. Earth Planets Space 58(2):153–157

    Article  Google Scholar 

  • Quanser (2008) Position control and earthquake analysis. Quanser Shake Table II User Manual, Nr 632, Rev 3.50, Quanser Inc, Markham, Canada

  • Salem DR (2010) Approaches for the combined tracking of GPS L1/L5 signals. Ph.D. thesis, University of Calgary, Canada

  • Shi C, Lou Y, Zhang H, Zhao Q, Geng J, Wang R, Fang R, Liu J (2010) Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations. Adv Space Res 46(2):228–235. doi:10.1016/j.asr.2010.03.006

    Article  Google Scholar 

  • Spilker JJ (1980) GPS signal structure and performance characteristics. Global positioning system, vol I. Institute of Navigation, Washington, pp 29–54

    Google Scholar 

  • Wang G-Q, Boore DM, Tang G, Zhou X-Y (2007) Comparisons of ground motions from colocated and closely spaced one-sample-per-second Global Positioning System and accelerograph recordings of the 2003 M 6.5 San Simeon, California, earthquake in the Parkield region. Bull Seismol Soc Am 97(1B):76–98. doi:10.1785/0120060053

    Article  Google Scholar 

  • Wang G-Q, Blume F, Meertens C, Ibanez P, Schulze M (2012) Performance of high-rate kinematic GPS during strong shaking: observations from shake table tests and the 2010 Chile earthquake. J Geod Sci 2(1):15–30. doi:10.2478/v10156-011-0020-0

    Google Scholar 

  • Ward PW, Betz JW, Hegarty CJ (2006) Satellite signal acquisition, tracking, and data demodulation. In: Kaplan ED, Hegarty CJ (eds) Understanding GPS: principles and applications, 2nd edn. Artech House, Norwood, pp 153–241

    Google Scholar 

  • Woo KT (2000) Optimum semi-codeless carrier phase tracking of L2. Navig J Inst Navig 47(2):82–99

    Article  Google Scholar 

  • Yin H, Wdowinski S, Liu X, Gan W, Huang B, Xiao G, Liang S (2013) Strong ground motion recorded by high-rate GPS of the 2008 Ms8.0 Wenchuan Earthquake, China. Seismol Res Lett 84(2):210–218. doi:10.1785/0220120109

    Article  Google Scholar 

  • Zhou X, Sun W, Zhao B, Fu G, Dong J, Nie Z (2012) Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw = 9.0 Tohoku-Oki earthquake. J Geophys Res, p 117. doi:10.1029/2011JB008849

Download references

Acknowledgments

This project was funded by the Swiss National Science Foundation. We are thankful to the manufacturers Javad and NovAtel for providing additional information about their GNSS receivers. Finally, we thank Dominik Werne, Ladina Steiner, and Paul Sorber for the assistance during the shake table experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Häberling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häberling, S., Rothacher, M., Zhang, Y. et al. Assessment of high-rate GPS using a single-axis shake table. J Geod 89, 697–709 (2015). https://doi.org/10.1007/s00190-015-0808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0808-2

Keywords

Navigation