Skip to main content

Advertisement

Log in

Fusion of high-resolution DEMs derived from COSMO-SkyMed and TerraSAR-X InSAR datasets

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Voids caused by shadow, layover, and decorrelation usually occur in digital elevation models (DEMs) of mountainous areas that are derived from interferometric synthetic aperture radar (InSAR) datasets. The presence of voids degrades the quality and usability of the DEMs. Thus, void removal is considered as an integral part of the DEM production using InSAR data. The fusion of multiple DEMs has been widely recognized as a promising way for the void removal. Because the vertical accuracy of multiple DEMs can be different, the selection of optimum weights becomes a key problem in the fusion and is studied in this article. As a showcase, two high-resolution InSAR DEMs near Mt. Qilian in northwest China are created and then merged. The two pairs of InSAR data were acquired by TerraSAR-X from an ascending orbit and COSMO-SkyMed from a descending orbit. A maximum likelihood fusion scheme with the weights optimally determined by the height of ambiguity and the variance of phase noise is adopted to syncretize the two DEMs in our study. The fused DEM has a fine spatial resolution of 10 m and depicts the landform of the study area well. The percentage of void cells in the fused DEM is only 0.13 %, while 6.9 and 5.7 % of the cells in the COSMO-SkyMed DEM and the TerraSAR-X DEM are originally voids. Using the ICESat/GLAS elevation data and the Chinese national DEM of scale 1:50,000 as references, we evaluate vertical accuracy levels of the fused DEM as well as the original InSAR DEMs. The results show that substantial improvements could be achieved by DEM fusion after atmospheric phase screen removal. The quality of fused DEM can even meet the high-resolution terrain information (HRTI) standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Carabajal CC, Harding DJ (2005) ICESat validation of SRTM C-band digital elevation models. Geophys Res Lett 32:L22S01. doi:10.1029/2005GL023957

    Article  Google Scholar 

  • Carrasco D, Díaz J, Broquetas A, Arbiol R, Castillo M, Palà V (1997) Ascending-descending orbit combination SAR interferometry assessment. In: Proceedings of 3rd ERS symposium, Florence, Italy, pp 17–21

  • Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost function in nonlinear optimization. J Opt Soc Am A 18(2):338–351

    Article  Google Scholar 

  • Costantini M, Malvarosa F, Minati F, Zappitelli E (2006). A data fusion algorithm for DEM mosaicking: building a global DEM with SRTM-X and ERS data. In: Proceedings of IGARSS 2006, Denver, Colorado, USA, 31 July–4 August 2006

  • Crosetto M (2002) Calibration and validation of SAR interferometry for DEM generation. ISPRS J Photogramm Remote Sens 57(3):213–227

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Ferretti A, Guarnieri AM, Prati C, Rocca F, Massonnet D (2007). InSAR principles: guidelines for sar interferometry processing and interpretation. ESA Publications, Noordwijk, The Netherlands, B50–B52. http://www.esa.int/esapub/tm/tm19/TM-19_ptB.pdf. Accessed 23 Nov 2013

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Fiedler H, Boerner E, Mittermayer J, Krieger G (2005) Total zero doppler steering–a new method for minimizing the Doppler centroid. IEEE Geosci Remote Sens Lett 2(2):141–145

    Article  Google Scholar 

  • Gatelli F, Guarnieri AM, Parizzi F, Pasquali P, Prati C, Rocca F (1994) The wavenumber shift in SAR interferometry. IEEE Trans Geosci Remote Sens 32(4):855–865

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publisher, Dordrecht, Netherlands

    Google Scholar 

  • Italian Space Agency (2007). COSMO-SkyMed System Description & User Guide. http://www.e-geos.it/products/pdf/csk-user_guide.pdf. Accessed 23 Nov 2013

  • Karkee M, Steward BL, Aziz SA (2008) Improving quality of public domain digital elevation models through data fusion. Biosyst Eng 101(3):293–305

    Article  Google Scholar 

  • Knöpfle W, Strunz G, Roth A (1998) Mosaicking of digital elevation models derived by SAR interferometry. Int Arch Photogramm Remote Sens Spat Inf Sci 32(4):306–313

    Google Scholar 

  • Lee JS, Hoppel KW, Mango SA, Miller AR (1994) Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans Geosci Remote Sens 32(5):1017–1028

    Article  Google Scholar 

  • Liao MS, Jiang HJ, Wang T, Zhang, L (2011) APS removal and void filling for DEM reconstruction from high-resolution InSAR data. In Proceedings of Fringe 2011 Workshop, Frascati, Italy, pp 19–23 September 2011

  • Liao MS, Jiang HJ, Wang Y, Wang T, Zhang L (2013) Improved topographic mapping through high-resolution SAR interferometry with atmospheric effect removal. ISPRS J Photogramm Remote Sens 80:72–79

    Article  Google Scholar 

  • Liao MS, Wang T, Lu LJ, Zhou WJ, Li DR (2007) Reconstruction of DEMs from ERS-1/2 Tandem data in mountainous area facilitated by SRTM data. IEEE Trans Geosci Remote Sens 45(7):2325–2335

    Article  Google Scholar 

  • NASA Goddard Space Flight Center, 2011. ICESat: GLAS Instrument. http://icesat.gsfc.nasa.gov/icesat/glas.php. Accessed 23 Nov 2013

  • Parpasaika H, Poli D, Baltsavias E (2008) A framework for the fusion of digital elevation models. Int Arch Photogramm Remote Sens Spatial Inf Sci 37(B2):811–817

    Google Scholar 

  • Rodríguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 72(3):249–260

    Article  Google Scholar 

  • Sansosti E, Lanari R, Fornaro G, Franceschetti G, Tesauro M, Puglisi G, Coltelli M (1999) Digital elevation model generation using ascending and descending ERS-1/ERS-2 tandem data. Int J Remote Sens 20(8):1527–1547

    Article  Google Scholar 

  • Schutz BE, Zwally HJ, Schuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. doi:10.1029/2005GL024009

    Article  Google Scholar 

  • Schwäbisch M (1997) SAR-Interferometrie—Technik, Anwendungen. Perspektiven. Zeitschrift für Photogrammetrie und Fernerkundung 65(1):22–29

    Google Scholar 

  • Tough RJA, Blacknell D, Quegan S (1995) A statistical description of polarimetric and interferometric synthetic aperture radar. Proc R Soc Lond A 449:567–589

    Article  Google Scholar 

  • Wang PY, Li ZQ, Gao WY (2011) Rapid shrinking of glaciers in the Middle Qilian Mountain region of Northwest China during the last \(\sim \)50 years. J Earth Sci 22(4):539–548 (in Chinese)

    Article  Google Scholar 

  • Werninghaus R, Buckreuss S (2010) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48(2):606–614

    Article  Google Scholar 

  • Zhang L, Balz T, Liao MS (2012) Satellite SAR geocoding with refined RPC model. ISPRS J Photogramm Remote Sens 69:37–49

    Article  Google Scholar 

Download references

Acknowledgments

The anonymous reviewers are appreciated for their helpful comments and suggestions to improve the quality of this paper. This work was financially supported by the National Key Basic Research Program of China (Grant Nos. 2013CB733205 and 2013CB733204), the National Natural Science Foundation of China (Grant Nos. 41271457, 61331016, and 41021061), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110141110057), and the Shanghai Academy of Spaceflight Technology Innovation Fund (Grant No. SAST201214). The authors thank the Italian Space Agency (ASI) and the Eastdawn Corp. for providing the COSMO-SkyMed data, the Astrium Services Corp. for providing the TerraSAR-X data, the National Snow and Ice Data Center (NSIDC) of USA for providing ICESat/GLAS data products, and the National Geomatics Center of China for providing the Chinese national DEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Zhang, L., Wang, Y. et al. Fusion of high-resolution DEMs derived from COSMO-SkyMed and TerraSAR-X InSAR datasets. J Geod 88, 587–599 (2014). https://doi.org/10.1007/s00190-014-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0708-x

Keywords

Navigation