Skip to main content
Log in

The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The main goal of this paper is to provide a summary of our current knowledge of the ionosphere as it relates to space geodetic techniques, especially the most informative technology, global navigation satellite systems (GNSS), specifically the fully deployed and operational global positioning system (GPS). As such, the main relevant modeling points are discussed, and the corresponding results of ionospheric monitoring are related, which were mostly computed using GPS data and based on the direct experience of the authors. We address various phenomena such as horizontal and vertical ionospheric morphology in quiet conditions, traveling ionospheric disturbances, solar flares, ionospheric storms and scintillation. Finally, we also tackle the question of how improved knowledge of ionospheric conditions, especially in terms of an accurate understanding of the distribution of free electrons, can improve space geodetic techniques at different levels, such as higher-order ionospheric effects, precise GNSS navigation, single-antenna GNSS orientation and real-time GNSS meteorology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich EL, Altynsev AT, Grechnev VV, Leonovich LA (2002) The response of the ionosphere to faint and bright solar flares as deduced from global GPS network data. Ann Geophys 45(1): 31–40

    Google Scholar 

  • Alizadeh M, Schuh H, Schmidt M (2010) Multi-dimensional modeling of electron density using spherical harmonics and chapman function, held in Vienna. In: Geophysical Research Abstracts, vol 12, EGU2010-4103-1, EGU General Assembly, May 2010

  • Angling MJ, Cannon PS (2004) Assimilation of radio occultation measurements into background ionospheric models. Radio Sci Vol 39. RS1S08, doi:10.1029/2002RS002819

  • Aragón-Àngel A, Hernández-Pajares M, Juan JM, Sanz J (2010) Improving the Abel transform inversion using bending angles from FORMOSAT-3 /COSMIC. GPS Solut 14:23–33. doi:10.1007/s10291-009-0147-y

    Google Scholar 

  • Arikan F, Arikan O, Erol CB (2007) Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Adv Space Res 39(5): 867–874

    Article  Google Scholar 

  • Azpilicueta F, Brunini C, Radichella SM (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38: 2324–2331

    Article  Google Scholar 

  • Azpilicueta F, Brunini C (2011) A new concept regarding the cause of ionosphere semiannual and annual anomalies. J Geophys Res Space Phys 116: A01307. doi:10.1029/2010JA015977

    Article  Google Scholar 

  • Basu S, Groves KM, Quinn JM, Doherty P (1999) A comparison of TEC fluctuations and scintillations at Ascension Island. J Atm Solar Terr Phys 61: 1219–1226

    Article  Google Scholar 

  • Beniguel Y, Adam J-P, Jakowski N, Noack T, Wilken V, Valette J-J, Cueto M, Bourdillon A, Lassudrie-Duchesne P, Arbesser-Rastburg B (2009) Analysis of scintillation recorded during the PRIS measurement campaign. Radio Sci 44: RS0A30. doi:10.1029/2008RS004090

    Article  Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2): 261–275

    Article  Google Scholar 

  • Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res 108(A2): 1056. doi:10.1029/2002JA009346

    Article  Google Scholar 

  • Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46: 2006RG000212, RG1003

  • Caissy M, Weber G, Agrotis L, Wübbena G, Hernández-Pajares M (2011) The IGS real-time pilot project—the development of real-time IGS correction products for precise point positioning. In: Geophysics Research Abstracts, vol 13, EGU2011-7472, EGU General Assembly, May 2011

  • Chen X, Landau H, Vollath U (2003) New tools for network RTK intergrity monitoring. In: Paper presented at ION GPS/2003. Inst. of Navig., Portland, Oregon, USA

  • Choi K, Bilich K, Larson M, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31: L22608. doi:10.1029/2004GL021621

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration error son experimental slant total electron content (TEC) determined with GPS. J Geod 81: 111–120

    Article  Google Scholar 

  • Coster AJ, Colerico MJ, Foster JC, Rideout W, Rich F (2007) Longitude sector comparisons of storm enhanced density. Geophys Res Lett 34: L18105

    Article  Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London. ISBN 0-86341-186-X

  • Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Du Q., Faber V., Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4): 637–676

    Article  Google Scholar 

  • Durmaz M, Onur Karslioglu M, Nohutcu M (2010) Regional VTEC modeling with multivariate adaptive regression splines. Adv Space Res 46(2): 180–189

    Article  Google Scholar 

  • Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5: S12002

    Article  Google Scholar 

  • Feltens J, Angling M, Jakowski N, Mernandez-Pajares M, Zandbergen R (2010) GNSS contribution to next generation global ionospheric monitoring. Beacon Satellite Symposium 2010, Barcelona, 8 June 2010

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311

    Article  Google Scholar 

  • García-Fernández M, Hernández-Pajares M, Juan JM, Sanz J, Orús R, Coisson P, Nava B, Radicella SM (2003a) Combining ionosonde with ground GPS data for electron density estimation. J Atm Sol Terr Phys 65: 683–691

    Article  Google Scholar 

  • García-Fernández M, Hernández-Pajares M, Juan JM, Sanz J (2003b) Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information. J Geophys Res Space Phys 108(A9): 1338. doi:10.1029/2003JA009952

    Article  Google Scholar 

  • García-Rigo A, Hernández-Pajares M, Juan JM et al (2007) Solar flare detection system based on global positioning system data: first results. Adv Space Res IRI05-35 39:889–895

    Article  Google Scholar 

  • García-Rigo A, Hernández-Pajares M, Juan JM, Sanz J (2008) Real time ionospheric TEC monitoring method applied to detect solar flares (Poster). European General Assembly (EGU), Vienna, Austria

    Google Scholar 

  • García-Rigo A, Hernández-Pajares M, Monte E, Juan JM, Sanz J, Krankowski A, Wielgosz P (2009) Assessment of UPC model for ionosphere VTEC prediction (Poster). Geodesy for Planet Earth (IAG), Buenos Aires, Argentina

    Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7): 389–399. doi:10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Hajj GA, Ibanez-Meir R, Kursiniski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imag Syst Technol 5: 174–184

    Article  Google Scholar 

  • Hajj GA, Wilson BD, Wang C, Pi X, Rosen LG (2004) Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Sci 39: RS1S05

    Article  Google Scholar 

  • Hernández-Pajares M (2004) IGS ionosphere WG Status report: performance of IGS ionosphere TEC maps, Position Paper. IGS Workshop, Bern

  • Hernández-Pajares M, Juan JM, Sanz J (1997) High resolution TEC monitoring method using permanent ground GPS receivers. Geophys Res Lett 24(13): 1643–1646

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1997) Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32(3): 1081–1089

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Solé JG (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res 103(A9): 20789– 20796

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atm Sol Terr Phys 61: 1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16): 2473–2476

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13): 2009–2012

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Colombo OL, van der Marel H (2001) A new strategy for real-time integrated water vapor determination in WADGPS networks. Geophys Res Lett 28(17): 3267–3270

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2002) Improving the real-time ionospheric determination from GPS sites at very long distances over the equator. J Geophys Res 107: A10

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2003) Feasibility of wide-area subdecimeter navigation with GALILEO and Modernized GPS. IEEE Trans Geosci Remote Sens 41(9): 2128– 2131

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, García-Rodríguez A, Colombo OL (2004) Wide area real time kinematics with Galileo and GPS signals. ION-GNSS meeting, Portland, Oregon

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M (2005a) Towards a more realistic ionospheric mapping function. XXVIII URSI General Assembly, Delhi

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Farnworth R, Soley S (2005b) EGNOS test bed ionospheric corrections under the October and November 2003 Storms. IEEE Trans Geosci Remote Sens 43(10):2283–2293

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (2006) Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J Geophys Res 111: A07S11

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (2006) Real time MSTIDs modelling and application to improve the precise GPS and GALILEO navigation. ION GNSS meeting, Forth Worth, TX, USA

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112: B08417

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. Special IGS Issue J Geod 83: 263–275

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel A, Ramos-Bosch P, Samson J, Tossaint M, Albertazzi M, Odijk D, Teunissen PJG, de Bakker P, Verhagen S, van der Marel H (2010a) Wide-Area RTK High Precision Positioning on a Continental Scale. ION GNSS meeting, Inside GNSS

    Google Scholar 

  • Hernández-Pajares M et al (2010b) Section 9.4 Ionospheric model for radio techniques of Chapter 9 Models for atmospheric propagation delays of IERS Conventions 2010. In: Petit G., Luzum B. (eds) IERS Technical Note No. 36. Verlag des Bundes amts fur Kartographie und Geodasie, Frankfurt am Main

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—Global navigation satellite systems: GPS, GLONASS, Galileo & more. Springer, New York

    Google Scholar 

  • Hoque MM, Jakowski N (2008) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12(2): 87–97

    Article  Google Scholar 

  • Howe BM, Runciman K, Secan JA (1998) Tomography of the ionosphere: four-dimensional simulations. Radio Sci 33: 109–128

    Article  Google Scholar 

  • Jakowski N, Porsch F, Mayer G (1994) Ionosphere-induced-Ray-Path bending effects in precision satellite positioning systems. SPN 1/94:6–13

    Google Scholar 

  • Jakowski N, Wehrenpfennig A, Heise S, Reigber CH, Lühr H, Grunwaldt L, Meehan T (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10). doi:10.1029/2001GL014364

  • Jakowski N, Wehrenpfennig A, Heise1 S, Reigber CH, Lühr H (2003) Status of ionospheric radio occultation CHAMP data analysis and validation of higher level data products, First CHAMP science mission results for gravity. In: Reigber Ch, Lühr H, Schwintzer P (eds) Magnetic and Atmospheric Studies. Springer, Berlin, pp 462–472 ISBN 3-540-00206-5

    Google Scholar 

  • Juan JM, Rius A, Hernández-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4): 393–396

    Article  Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16): 1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics. Int Geophys Ser 96. ISBN 978-0-12-088425-4, Elsevier

  • Khattatov B, Murphy M, Gnedin M, Sheffel J, Adams J, Cruickshank B, Yudin V, Fuller-rowell T, Retterer J (2006) Ionospheric nowcasting via assimilation of GPS measurements of ionospheric electron content in a global physics-based time-dependent model. Q J Royal Meteorol Soc 131(613): 3543–3559

    Article  Google Scholar 

  • King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Mendes Cerveira PJ, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31: 465–507. doi:10.1007/s10712-010-9100-4

    Article  Google Scholar 

  • Kliore AJ, Levy GS, Cain DL, Fjeldbo G, Rasool I (1967) Atmosphere and ionosphere of Venus from the Mariner VS-band radio occultation Measurement. Science 158(3809): 1683–1688

    Article  Google Scholar 

  • Komjathy A, Langley RB (1996) The effect of shell height on high precision ionospheric modelling using GPS. International GPS Service for Geodynamics (IGS) Workshop in Silver Spring. MD, 19–21 Mar 1996. In: Proceedings of the 1996 IGS Workshop, pp 193– 203

  • Li G, Ning B, Yuan H (2007) Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planets Space 59: 279–285

    Google Scholar 

  • Liu L, He M, Wan W, Zhang ML (2008) Topside ionospheric scale heights retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements. J Geophys Res 113: A10304. doi:10.1029/2008JA013490

    Article  Google Scholar 

  • Liu JY, Lin CH, Tsai HF, Liou YA (2004) Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation. J Geophys Res 109: A01307

    Article  Google Scholar 

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. doi:10.1029/97RS02707

    Article  Google Scholar 

  • Mendillo M, Klobuchar JA, Fritz RB (1974) Behavior of the ionospheric F region during the great solar flare of August 7, 1972. J Geophys Res 79: 665–672

    Article  Google Scholar 

  • Misra P, Enge P (2004) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press Lincoln, USA

    Google Scholar 

  • Orùs R, Hernández-Pajares M, Juan JM, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atm Sol Terr Phys 67(16): 1598–1609

    Article  Google Scholar 

  • Petrie EJ, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32: 197–253. doi:10.1007/s10712-010-9105-z

    Article  Google Scholar 

  • Sanz J, Juan JM, Hernández-Pajares M (2011) GNSS data processing. In: ESA Communication Production Office (ed) Fundamentals and Algorithms, vol I (in press)

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29: 577–586

    Article  Google Scholar 

  • Schaer S, Gurtner W, Feltens J (1998) IONEX: The IONosphere Map EXchange Format Version 1. February 25, 1998. In: Proceedings of the 1998 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, February 9–11, pp 233–247

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph. D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 March 1999

  • Schmidt M, Bilitza D, Shum CK, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42(4): 782–790

    Article  Google Scholar 

  • Seeber G (1993) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter & Co., Berlin

    Google Scholar 

  • Shiokawa K, Otsuka Y, Ogawa T, Balan N, Igarashi K, Ridley AJ, Knipp DJ, Saito A, Yumoto K (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res 107(A6): 1088. doi:10.1029/2001JA000245

    Article  Google Scholar 

  • Smith DA, Araujo-Pradere EA, Minter C, Fuller-Rowell T (2008) A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci 43: RS6008

    Article  Google Scholar 

  • Tsai LC, Tsai WH (2004) Improvement of GPS/MET ionospheric profiling and validation using the Chung-Li ionosonde measurements and the IRI mode. TAO 15(4): 589–607

    Google Scholar 

  • Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Lakhina GS, Li G, Zank GP (2009) A brief review of solar flare effects on the ionosphere. Radio Sci 44: RS0A17. doi:10.1029/2008RS004029

    Article  Google Scholar 

  • Tsyganenko NA (2003) A set of FORTRAN subroutines for computa- tions of the geomagnetic field in the Earth’s magnetosphere (Geopack). Univ. Space Res. Assoc., Columbia Md., USA

    Google Scholar 

  • Van Dierendonck AJ, Arbesser-Rastburg B (2004) Measuring ionospheric scintillation in the equatorial region over Africa, including measurements from SBAS geostationary satellite signals. In: Proceedings of ION GNSS 17th technical meeting of the satellite division, Long Beach, CA, vol 316

  • Walter T et al (2010) Effect of ionospheric scintillations on GNSS—a white paper. SBAS Ionospheric Working Group, November 2010

  • Wanninger L (2004) Ionospheric disturbance indices for RTK and network RTK positioning. In: Paper presented at ION GPS/2004, Inst. of Navig., Long Beach, California

  • Ware RH, Exner ML, Herman BM, Kuo B, Meehan TK, Rocken C (1995) GPS/MET preliminary report. The University Corporation for Atmospheric Research, Boulder, Colorado

  • Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28: 217–222

    Article  Google Scholar 

  • Yue X, Schreiner WS, Lei J, Rocken C, Kuo YH, Wan W (2010) Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008. J Atm Sol Terr Phys 72: 1270–1274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hernández-Pajares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Pajares, M., Juan, J.M., Sanz, J. et al. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85, 887–907 (2011). https://doi.org/10.1007/s00190-011-0508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0508-5

Keywords

Navigation