Skip to main content
Log in

Modeling the length of day and extrapolating the rotation of the Earth

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The stochastic behavior of the length of day (LOD) process is analyzed and is modeled within statistical accuracy on a time-scale ranging from weeks to millennia by a three-component model comprising a global Brownian motion process, decadal fluctuations, and a 50-day Madden–Julian oscillation. While the model is intended to be phenomenological, some possible physical models underlying the three components are speculated upon. The model is applied to estimate long-range extrapolation errors. For example, it predicts a standard error of 1 h in the clock-time correction ΔT for extrapolation by 1,500 years from 500 to 2000 BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldridge KD, Bloxham J, Dehant V, Gubbins D, Hide R, Hinderer J, Hutcheson KA, Jault D, Jones CA, Legros H, LeMouël J-L, Lloyd D, Wahr JM, Whaler KA, Zhang K (1990) Core–mantle interactions. Surv Geophy 11(4):329–353 DOI 10.1007/BF01902965

    Google Scholar 

  • Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, New York

    Google Scholar 

  • Chao BF, Gross RS (2005) Did the 26 December Sumatra, Indonesia, earthquake disrupt the Earth’s rotation as the mass media have said?. EOS—Trans AGU 86:1–2

    Google Scholar 

  • Chatfield C (1989) The analysis of time series: an introduction, 4th edn. Chapman and Hall, London

    Google Scholar 

  • Hamdan K, Sung L-Y (1996) Stochastic modeling of length of day and universal time. J Geodesy 70:307–320

    Google Scholar 

  • Hendon HH (1995) Length of day changes associated with the Madden–Julian oscillation. J Atmos Sci 52:2373–2383

    Article  Google Scholar 

  • Hide R, Dickey JO (1991) Earth’s variable rotation. Science 253:629–637

    Article  Google Scholar 

  • Huber PJ (1999–2000) Astronomical dating of Ur III and Akkad. Archiv für Orientforschung 46/47:50–79

    Google Scholar 

  • Huber PJ, De Meis S (2004) Babylonian eclipse observations from 750 BC to 1 BC. Istituto Italiano per l’Africa e l’Oriente, Mimesis, Milano

  • Jordi C, Morrison LV, Rosen RD, Salstein DA, Rosselló G (1994) Fluctuations in the Earth’s rotation since 1830 from high-resolution astronomical data. Geophys J Int 117:811–818

    Article  Google Scholar 

  • Liu C-Y (2002) An early solar eclipse record—“Tiandayi” in the 10th century BC. Chin J Astron Astrophys 2:391–395

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Morrison LV, Stephenson FR (1982) Secular and decade fluctuations in the Earth’s rotation: 700 BC – AD 1978. In: Fricke W, Teleki G (eds) Sun and planetary system. Reidel, Dordrecht, pp 173–178

    Google Scholar 

  • Morrison LV, Stephenson FR (2004) Historical values of the Earth’s clock error DT and the calculation of eclipses. J Hist Astron 35:327–336

    Google Scholar 

  • Muller PM (1975) An analysis of the ancient astronomical observations with the implications for geophysics and cosmology. Ph.D. Thesis, University of Newcastle

  • Muller PM, Stephenson FR (1975) The acceleration of the Earth and Moon from early astronomical observations. In: Rosenberg GD, Runcorn SK (eds) Growth rhythms and history of the Earth’s rotation. Wiley, London

    Google Scholar 

  • Munk W, Macdonald G (1975) The rotation of the Earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Munk W, Revelle R (1952) Sea level and the rotation of the Earth. Am J Sci 250:829–833

    Article  Google Scholar 

  • Slutsky E (1927) The summation of random causes as the source of cyclic processes (in Russian). Probl Econ Cond 3:1. English trans. in Econometrica 5:105 (1937)

  • Stephenson FR (1997) Historical eclipses and Earth’s rotation. Cambridge University Press, Cambridge

    Google Scholar 

  • Stephenson FR (2003) Historical eclipses and Earth’s rotation. Astron Geophys 44(2): 2.22–2.27

  • Stephenson FR, Morrison LV (1984) Long-term changes in the rotation of the Earth: 700 BC to AD 1980. Phil Trans R Soc Lond A 313:47–70

    Article  Google Scholar 

  • Stephenson FR, Morrison LV (1995) Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990. Phil Trans R Soc Lond A 351:165–202

    Article  Google Scholar 

  • Varga P, Gambis D, Bus Z, Bizouard Ch (2005) The relationship between the global seismicity and the rotation of the Earth. In: Capitaine N (ed) Proceedings of the “Journées 2004 Systèmes de Référence Spatio-Temporels”, Observatoire de Paris

  • Yoder FY, Williams JG, Parke ME (1981) Tidal variations of Earth rotation. J Geophys Res 86:881–891

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003 DOI 10.1029/2004RG000158

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, P.J. Modeling the length of day and extrapolating the rotation of the Earth. J Geodesy 80, 283–303 (2006). https://doi.org/10.1007/s00190-006-0067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0067-3

Keywords

Navigation