Skip to main content
Log in

On the extreme points of moments sets

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Necessary and sufficient conditions for a measure to be an extreme point of the set of measures on a given measurable space with prescribed generalized moments are given, as well as an application to extremal problems over such moment sets; these conditions are expressed in terms of atomic partitions of the measurable space. It is also shown that every such extreme measure can be adequately represented by a linear combination of k Dirac probability measures with nonnegative coefficients, where k is the number of restrictions on moments; moreover, when the measurable space has appropriate topological properties, the phrase “can be adequately represented by” here can be replaced simply by “is”. Applications to specific extremal problems are also given, including an exact lower bound on the exponential moments of truncated random variables, exact lower bounds on generalized moments of the interarrival distribution in queuing systems, and probability measures on product spaces with prescribed generalized marginal moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamski W (1976) Complete spaces and zero-one measures. Manuscr Math 18(4):343–352

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett G (1962) Probability inequalities for the sum of independent random variables. J Am Stat Assoc 57(297):33–45

    Article  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Eckberg AE Jr (1977) Sharp bounds on Laplace–Stieltjes transforms, with applications to various queueing problems. Math Oper Res 2(2):135–142

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland I, Témam R (1999) Convex analysis and variational problems, classics in applied mathematics, vol 28. English edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. doi:10.1137/1.9781611971088 (Translated from the French)

  • Hoeffding W (1955) The extrema of the expected value of a function of independent random variables. Ann Math Stat 26:268–275

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58:13–30

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, Studden WJ (1966) Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, vol XV. Interscience Publishers John Wiley & Sons, New York

  • Karr AF (1983) Extreme points of certain sets of probability measures, with applications. Math Oper Res 8(1):74–85. doi:10.1287/moor.8.1.74

    Article  MathSciNet  MATH  Google Scholar 

  • Kemperman JHB (1983) On the role of duality in the theory of moments. In: Semi-infinite programming and applications (Austin, TX, 1981) (Lecture notes in economics and mathematical systems), vol 215, Springer, Berlin, pp 63–92

  • Kreĭn MG, Nudel’man AA (1977) The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development (Russian trans: Louvish D), vol 50. Translations of Mathematical Monographs, American Mathematical Society, RI

  • Lasserre JB (2010) Moments, positive polynomials and their applications, Imperial College Press Optimization Series, vol 1. Imperial College Press, London

  • Mulholland HP, Rogers CA (1958) Representation theorems for distribution functions. Proc Lond Math Soc 3(8):177–223

    Article  MathSciNet  MATH  Google Scholar 

  • Okada S (1979) Supports of Borel measures. J Aust Math Soc Ser A 27(2):221–231

    Article  MathSciNet  MATH  Google Scholar 

  • Phelps RR (2001) Lectures on Choquet’s theorem (Lecture notes in mathematics) 2nd edn, vol 1757. Springer, Berlin. doi:10.1007/b76887

  • Pinelis I (2011a) Exact lower bounds on the exponential moments of Winsorized and truncated random variables. J Appl Probab 48:547–560

  • Pinelis I (2011b) Tchebycheff systems and extremal problems for generalized moments: a brief survey. arXiv:1107.3493

  • Pinelis I (2012) An asymptotically Gaussian bound on the Rademacher tails. Electron J Probab 17:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Pinelis I (2014) On the Bennett–Hoeffding inequality. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50(1):15–27. doi:10.1214/12-AIHP495

  • Pinelis I (2015) Exact Rosenthal-type bounds. Ann Probab 43(5):2511–2544

    Article  MathSciNet  MATH  Google Scholar 

  • Pinelis I, Molzon R (2009) Berry-Esséen bounds for general nonlinear statistics, with applications to Pearson’s and non-central Student’s and Hotelling’s. arXiv:math/0701806

  • Pinelis IF, Utev SA (1989) Sharp exponential estimates for sums of independent random variables. Theory Probab Appl 34(2):340–346. doi:10.1137/1134032

    Article  MathSciNet  MATH  Google Scholar 

  • Richter H (1957) Parameterfreie Abschätzung und Realisierung von Erwartungswerten. Bl Deutsch Ges Versicherungsmath 3:147–162

    MathSciNet  MATH  Google Scholar 

  • Seidel W (1989) Supports of Borel measures. Fund Math 133(1):67–80

    MathSciNet  MATH  Google Scholar 

  • Tarski A (1948) A decision method for elementary algebra and geometry. RAND Corporation, Santa Monica

    MATH  Google Scholar 

  • Topsøe F (1970) Topology and measure (Lecture notes in mathematics), vol 133. Springer, Berlin

  • von Weizsäcker H, Winkler G (1979/80) Integral representation in the set of solutions of a generalized moment problem. Math Ann 246(1):23–32. doi:10.1007/BF01352023

  • Whitt W (1983) Untold horrors of the waiting room: what the equilibrium distribution will never tell about the queue-length process. Manag Sci 29(4):395–408. doi:10.1287/mnsc.29.4.395

    Article  MathSciNet  MATH  Google Scholar 

  • Winkler G (1988) Extreme points of moment sets. Math Oper Res 13(4):581–587. doi:10.1287/moor.13.4.581

    Article  MathSciNet  MATH  Google Scholar 

  • Yap CK (2000) Fundamental problems of algorithmic algebra. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Pinelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinelis, I. On the extreme points of moments sets. Math Meth Oper Res 83, 325–349 (2016). https://doi.org/10.1007/s00186-015-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-015-0530-0

Keywords

Mathematics Subject Classification

Navigation