Skip to main content
Log in

A moment-based test for extreme-value dependence

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper proposes a new rank-based test of extreme-value dependence. The procedure is based on the first three moments of the bivariate probability integral transform of the underlying copula. It is seen that the test statistic is asymptotically normal and its finite- and large-sample variance are calculated explicitly. Consistent plug-in estimators for the variance are proposed, and a fast algorithm for their computation is given. Although it is shown via counterexamples that no test based on the probability integral transform can be consistent, the proposed procedure achieves good power against common alternatives, both in finite samples and asymptotically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ben Ghorbal N, Genest C, Nešlehová J (2009) On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence. Can J Stat 37:534–552

    Article  MATH  Google Scholar 

  • Bücher A, Dette H, Volgushev S (2011) New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann Stat 39:1963–2006

    Article  MATH  Google Scholar 

  • Fredricks GA, Nelsen RB (2002) The Bertino family of copulas. In: Cuadras CA, Fortiana J, Rodriguez-Lallena JA (eds) Distributions with given marginals and statistical modelling. Kluwer Academic Publishers, Dordrecht, pp 81–91

  • Garralda-Guillem AI (2000) Structure de dépendance des lois de valeurs extrêmes bivariées. C R Acad Sci Paris Sér I Math 330:593–596

    Article  MathSciNet  MATH  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368

    Article  Google Scholar 

  • Genest C, Nešlehová J (2012) Copula modeling for extremes. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88:1034–1043

    Article  MathSciNet  MATH  Google Scholar 

  • Genest C, Nešlehová J, Ziegel J (2011) Inference in multivariate Archimedean copula models. TEST 20:223–256

    Article  MathSciNet  MATH  Google Scholar 

  • Ghoudi K, Khoudraji A, Rivest LP (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26:187–197

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan L, Resnick SI (1977) Limit theory for multivariate sample extremes. Z Wahrscheinlichkeitstheorie und Verw Gebiete 40:317–337

    Article  MathSciNet  MATH  Google Scholar 

  • Kojadinovic I, Yan J (2010) Nonparametric rank-based tests of bivariate extreme-value dependence. J Multivar Anal 101:2234–2249

    Google Scholar 

  • Kojadinovic I, Segers J, Yan J (2011) Large-sample tests of extreme-value dependence for multivariate copulas. Can J Stat 39:703–720

    Article  MathSciNet  MATH  Google Scholar 

  • Lee AJ (1990) \(U\)-statistics, Statistics: textbooks and monographs. Marcel Dekker Inc., New York

    Google Scholar 

  • McNeil AJ, Nešlehová J (2009) Multivariate Archimedean copulas, \(d\)-monotone functions and \(\ell _1\)-norm symmetric distributions. Ann Stat 37:3059–3097

    Article  MATH  Google Scholar 

  • Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2003) Kendall distribution functions. Stat Probab Lett 65:263–268

    Article  MATH  Google Scholar 

  • Pickands J III (1981) Multivariate extreme value distributions. In: Proceedings of the 43rd session of the international statistical institute, vol 2 (Buenos Aires, 1981), vol 49, pp 859–878, 894–902, with a discussion.

  • Quessy JF (2012) Testing for bivariate extreme dependence using Kendall’s process. Scand J Statist 39:497–514.

    Google Scholar 

  • Schweizer B, Wolff EF (1981) On nonparametric measures of dependence for random variables. Ann Stat 9:879–885

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à \(n\) dimensions et leurs marges. Publ Inst Statist Univ Paris 8: 229–231

  • van der Vaart AW (1998) Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

Grants from the Natural Sciences and Engineering Research Council and the Fonds québécois de la recherche sur la nature et les technologies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Nešlehová.

Appendices

Appendix A

 

Proof of Proposition 1

Since \(\mathrm{E}(I_{ij})=\mu _1\), \(\mathrm{E}(I_{ij}I_{kj})=\mu _2\) as well as \(\mathrm{E}(I_{ij}I_{kj}I_{lj})=\mu _3\), it is immediate that \(\mathrm{E}(S_{3n}+1)=4\mu _1+9\mu _2-16\mu _3\). Hence,

$$\begin{aligned} \mathrm{var}(S_{3n})=\mathrm{var}(S_{3n}+1)&= \mathrm{E}(S_n+1)^2-16\mu _{11}-72\mu _{12}+128\mu _{13} \\&-81\mu _{22}+288\mu _{23}-256\mu _{33}. \end{aligned}$$

Next,

$$\begin{aligned} (S_n+1)^2&= \left\{ \frac{4}{n(n-1)}\sum _{i\ne j}I_{ij}+\frac{9}{n(n-1)(n-2)}\sum _{i\ne j\ne k}I_{ij}I_{kj}-\frac{16}{n(n-1)(n-2)(n-3)}\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right\} ^2 \end{aligned}$$

can be expanded as follows:

$$\begin{aligned}&\frac{16}{n^2(n-1)^2}\left(\sum _{i\ne j}I_{ij}\right)\left(\sum _{k\ne \ell }I_{k\ell }\right)\\&\quad + \frac{72}{n^2(n-1)^2(n-2)}\left(\sum _{i\ne j\ne k}I_{ij}I_{kj}\right)\left(\sum _{\ell \ne m}I_{\ell m}\right)\\&\quad + \frac{81}{n^2(n-1)^2(n-2)^2}\left(\sum _{i\ne j\ne k}I_{ij}I_{kj}\right)\left(\sum _{p\ne q\ne r}I_{pq}I_{rq}\right)\\&\quad -\frac{128}{n^2(n-1)^2(n-2)(n-3)}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q}I_{pq}\right)\\&\quad -\frac{288}{n^2(n-1)^2(n-2)^2(n-3)}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q\ne r}I_{pq}I_{rq}\right)\\&\quad + \frac{256}{n^2(n-1)^2(n-2)^2(n-3)^2}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q\ne r\ne s}I_{pq}I_{rq}I_{sq}\right). \end{aligned}$$

Expectations of the first three terms are computed in Appendix A of Ben Ghorbal et al. (2009) and lead to the terms involving \(A_n\), \(B_n\) and \(C_n\). Expectations of the remaining terms can be calculated analogously by multiplying out the sums, distinguishing cases according to the number of distinct indices and taking expectations. For example, applying these steps to the fourth term leads to Table 6. Tallying the terms listed therein, one finds

$$\begin{aligned} \mathrm{E}\left\{ \frac{128}{n^2(n-1)^2(n-2)(n-3)}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q}I_{pq}\right) \right\} = \frac{128 D_n}{n(n-1)}. \end{aligned}$$
Table 6 Twenty one terms involved in the calculation of \(D_n\)

The same strategy leads to the expectations of the remaining two terms. There are 71 and 209 cases to be distinguished in the computation of the expectation of the fifth and the sixth term, respectively. A detailed list of all cases fills several pages and is available from the authors upon request. However, many indicator products are identical up to index relabeling and have the same expectation. For example,

$$\begin{aligned} \mathrm{E} (I_{ij}I_{kj}I_{\ell j}I_{pi}I_{ri}) = \mathrm{E}(I_{ij}I_{kj}I_{\ell j}I_{pk}I_{rk}) = \mathrm{E}(I_{ij}I_{kj}I_{\ell j}I_{p\ell }I_{r\ell }) = \theta _{12}. \end{aligned}$$

Tables 7 and 8 present a list of all parameters involved in the formula for \(E_n\) and \(F_n\) respectively, along with typical terms having these parameters as expectations. The number of terms leading to the same expectation is also given. Summing up, one finds

$$\begin{aligned}&\mathrm{E} \left\{ \frac{288}{n^2(n-1)^2(n-2)^2(n-3)}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q\ne r}I_{pq}I_{rq}\right) \right\} \\&\quad \quad = \frac{288 E_n}{n(n-1)(n-2)} \end{aligned}$$

as well as

$$\begin{aligned}&\mathrm{E} \left\{ \frac{256}{n^2(n-1)^2(n-2)^2(n-3)^2}\left(\sum _{i\ne j\ne k\ne \ell }I_{ij}I_{kj}I_{\ell j}\right)\left(\sum _{p\ne q\ne r\ne s}I_{pq}I_{rq}I_{sq}\right)\right\}&\quad \quad = \frac{256 F_n}{n(n-1)(n-2)(n-3)}. \end{aligned}$$

This completes the proof. \(\square \)

Table 7 Summary of the 73 terms involved in the calculation of \(E_n\)
Table 8 Summary of the 209 terms involved in the calculation of \(F_n\)

Proof of Proposition 2

From Proposition 1, one may write \(n\cdot \text{ var}(S_{3n})=\alpha _n+\beta _n+\gamma _n\), where

$$\begin{aligned} \alpha _n&= \frac{16\mu _1}{n-1} + \frac{72(2\mu _2+2\theta _1)}{n-1} - \frac{128(3\mu _3+6\theta _4)}{n-1}\\&+ \frac{81\{ 2\mu _2+(n-3)(4\mu _3+8\theta _3+2\theta _8)\} }{(n-1)(n-2)}\\&- \frac{288\{ 6\mu _3+6\theta _3+(n-4)(6\mu _4+12\theta _6+6\theta _{11}+6\theta _{15})\} }{(n-1)(n-2)}\\&+\frac{256\{ 6\mu _3+(n-4)(18\mu _4+36\theta _{11}+6\theta _{19})\}}{(n-1)(n-2)(n-3)} \\&+\frac{256 (n-4)(n-5)(9\mu _5+36\theta _{14}+18\theta _{18}) }{(n-1)(n-2)(n-3)}, \end{aligned}$$

as well as

$$\begin{aligned} \beta _n&= \frac{16(n-2)(\mu _2+2\theta _1+\theta _2)}{n-1} + \frac{72(n-3)(\mu _3+\theta _3+2\theta _4+2\theta _5)}{n-1} \\&+\frac{81(n-3)(n-4)(\mu _4+4\theta _6+4\theta _7)}{(n-1)(n-2)} - \frac{128(n-4)(\mu _4+3\theta _9+3\theta _{10}+\theta _{11})}{n-1}\\&- \frac{288(n-4)(n-5)(\mu _5+3\theta _{12}+6\theta _{13}+2\theta _{14})}{(n-1)(n-2)}\\&+ \frac{256(n-4)(n-5)(n-6)(\mu _6+9\theta _{16}+6\theta _{17})}{(n-1)(n-2)(n-3)} \end{aligned}$$

and

$$\begin{aligned} \gamma _n&= 16\, \mu _{11}\frac{(n-2)(n-3)-n(n-1)}{n-1} + 72\, \mu _{12}\frac{(n-3)(n-4)-n(n-1)}{n-1} \\&+ 81 \, \mu _{22}\frac{(n-3)(n-4)(n-5)-n(n-1)(n-2)}{(n-1)(n-2)} \\&- 128\, \mu _{13}\frac{(n-4)(n-5)-n(n-1)}{n-1}\\&- 288\, \mu _{23}\frac{(n-4)(n-5)(n-6)-n(n-1)(n-2)}{(n-1)(n-2)} \\&+ 256\, \mu _{33}\frac{(n-4)(n-5)(n-6)(n-7)-n(n-1)(n-2)(n-3)}{(n-1)(n-2)(n-3)} \text{.} \end{aligned}$$

It is easy to see that as \(n\rightarrow \infty \), \(\alpha _n \rightarrow 0\) while

$$\begin{aligned} \beta _n&\rightarrow 16(\mu _2+2\theta _1+\theta _2) + 72(\mu _3+\theta _3+2\theta _4+2\theta _5) \\&+81(\mu _4+4\theta _6+4\theta _7) -128(\mu _4+3\theta _9+3\theta _{10}+\theta _{11}) \\&-288(\mu _5+3\theta _{12}+6\theta _{13}+2\theta _{14}) +256(\mu _6+9\theta _{16}+6\theta _{17}) \end{aligned}$$

and

$$\begin{aligned} \gamma _n&\rightarrow -16(4\mu _{11})-72(6\mu _{12})-81(9\mu _{22})+128(8\mu _{13})\\&+288(12\mu _{23})-256(16\mu _{33}). \end{aligned}$$

Collecting the terms yields the result. \(\square \)

Appendix B: An algorithm for computing the plug-in estimators of the finite and large-sample variance of \(S_{3n}\)

Let \((I_{ij})\) be an \(n\times n\) matrix with entries \(I_{ij}=\mathbf{1}(X_i\le X_j,Y_i\le Y_j)\). Let also \(J\) be the \(n\times n\) identity matrix and write \(\mathbf{1}\) for an \(n\times 1\) vector of 1’s. Given arbitrary \(k\times \ell \) matrices \(A=(A_{ij})\) and \(B=(B_{ij})\), denote the sum of all elements of \(A\) by

$$\begin{aligned} \Sigma {(A)}=\sum _{i=1}^k\sum _{j=1}^\ell {A_{ij}} \end{aligned}$$

and the Hadamard (or entrywise) product of \(A\) and \(B\) by \(A\star B\).

To compute the plug-in estimators of the finite- and large-sample variance of \(S_{3n}\), respectively, proceed as follows.

  1. Step 0.

    Compute \(M=(I_{ij})-J\), \(A=M\mathbf{1}\), \(B=M^\top \mathbf{1}\), \(N=M^\top M\), \(P=MM^\top -\mathrm{diag}(MM^\top )\), \(Q=N-\mathrm{diag}(N)\).

  2. Step 1.

    For \(k\in \{1, \ldots ,6\}\), set \(b_k=\Sigma {(B_k)}\), where \(B_k=B\star \cdots \star B\) is the \(k\)-fold Hadamard product of \(B\). Let also \(a_2=\Sigma {(A\star A)}\), \(c=\Sigma {(A\star B_2)}\), \(d=\Sigma {(A\star B_3)}\). Also, for \(i\in \{2,3\}\), compute \(N_i=N\star \cdots \star N\) as the \(i\)-fold Hadamard product of \(N\).

  3. Step 2.

    Set \(m_1=b_1\) and compute \(t_1=\Sigma {(A\star B)}\), \(t_2=a_2-b_1\).

  4. Step 3.

    Compute sequentially

    $$\begin{aligned} \begin{array}{ll} m_2&= b_2-m_1,\\ m_3&= b_3-m_1-3m_2,\\ m_4&= b_4-m_1-7m_2-6m_3,\\ m_{11}&= m_1^2-b_2-2t_1-t_2,\quad \end{array}\quad \begin{array}{ll} t_3&= c-t_1,\\ t_4&= B^\top MB-2t_1,\\ t_5&= A^\top MB-b_2-t_1-t_2,\\ t_8&= \Sigma (PP^\top )-m_2. \end{array} \end{aligned}$$
  5. Step 4.

    Compute sequentially

    $$\begin{aligned} t_6&= B_2^\top { MB} - 2c- t_3 -t_4,\\ t_7&= ({ MB}-A)^\top { MB} + b_2-b_3-c-t_3-t_5-t_8,\\ m_{12}&= -2(A+B)^\top { MB} + 2a_2-2b_1-(b_1)^2+3b_2+b_1b_2-b_3+4t_1-t_3,\\ m_{22}&= (2A+2B-4B_2-2{ MB})^\top { MB} - 2b_2 - b_1b_2 + (b_2)^2 + 3b_3-b_4\\&+ 7c - m_{12} - 3t_1 - 2t_7. \end{aligned}$$
  6. Step 5.

    Compute sequentially

    $$\begin{aligned} m_5&= b_5-10m_4-25m_3-15m_2-m_1,\\ m_6&= b_6-15m_5-65m_4-90m_3-31m_2-m_1,\\ t_9&= B^\top M(B_2-3B)+2t_1-2t_4,\\ t_{10}&= A^\top M(B_2-3B)+2a_2-m_3-2t_4,\\ t_{11}&= d-c-2t_3,\\ t_{12}&= B_2^\top M(B_2-3B)+2c-2t_3-2t_4-4t_6-t_9,\\ t_{15}&= \Sigma {(B^\top N_2)}-B^\top \mathrm{diag}(N_2)-A^\top { MB} + b_2 -2t_8-t_3, \\ t_{13}&= ({ MB}_2-{ MB}-B_2)^\top { MB}+b_3-b_4-3t_3-t_4-2t_5-t_6\\&-2t_7-2t_8-t_{10}-t_{11}-2t_{15},\\ t_{14}&= (B_3-3B_2+2B)^\top { MB}-4t_{11},\\ t_{17}&= (B_3-3B_2+2B)^\top { MB}_2-16t_{11}-9t_{14},\\ t_{19}&= \Sigma {N_3}-\Sigma (N_2)-2t_8,\\ t_{18}&= B^\top N_2B-B_2^\top \mathrm{diag}(N_2)-({ MB})^\top { MB} \\&+b_3-4t_3-4t_8-2t_{11}-4t_{15}-t_{19},\\ t_{16}&= ({ MB}_2-3{ MB}+2A)^\top { MB}_2-2(B_3-{ MB})^\top { MB} \\&-2(B^\top N_2B-B_2^\top \mathrm{diag}(N_2))+4d-4b_3\\&+3b_4-b_5+8t_3+8t_8-t_{10}-3t_{11}-3t_{13} -2t_{14}+2t_{15}-2t_{18},\\ m_{13}&= b_1(2b_1-3b_2+b_3)-2b_2+3b_3-b_4-6t_4-3t_9-3t_{10}-t_{11},\\ m_{23}&= b_2(2b_1-3b_2+b_3)-2b_3+3b_4-b_5-6c-3B_2^\top M(B_2-3B)\\&-3t_{10}-7t_{11}-6t_{13}-2t_{14} -6t_{15}-m_{13},\\ m_{33}&= (9MB-3MB_2-6A-4B_3+3B_2-2B)^\top { MB}_2+15B_3^\top { MB}\\&+b_3(2b_1-3b_2+b_3)+6b_3-11b_4+6b_5-b_6-18d-9t_{13}-9t_{14}\\&-6t_{16}-2t_{17}-6t_{18}-m_{13}-3m_{23}. \end{aligned}$$
  7. Step 6.

    Set \(n_1=n_2=3\), \(n_3=n_4=n_5=n_8=4\), \(n_6=n_7=n_9=n_{10}=n_{11}=n_{15}=n_{19}=5\), \(n_{12}=n_{13}=n_{14}=n_{18}=6\), and \(n_{16}=n_{17}=7\). Then compute

    $$\begin{aligned} \hat{\mu }_i=m_i\cdot (n)_{i+1},\quad \hat{\mu }_{ij}=m_{ij}\cdot (n)_{i+j+2},\quad \hat{\theta }_{i}=t_{i}\cdot (n)_{n_i}, \end{aligned}$$

    where \((n)_i\) represents the falling factorial \(n(n-1)(n-2)\cdots (n-i+1)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Nešlehová, J. A moment-based test for extreme-value dependence. Metrika 76, 673–695 (2013). https://doi.org/10.1007/s00184-012-0410-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-012-0410-z

Keywords

Mathematics Subject Classification (2000)

Navigation