Skip to main content
Log in

An algorithm for the computation of optimum designs under a given covariance structure

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

Regression models with correlated errors lead to nonadditivity of the information matrix. This makes the usual approach of design optimization (approximation by a design measure, application of an equivalence theorem, numerical calculations by a gradient algorithm) impossible. Therefore extended information matrices depending upon design measures have been proposed recently and herein we present a first order iterative design optimization algorithm based upon them. A heuristic is formulated to circumvent the nonconvexity of the problem and the method is applied to typical examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Bischoff, W.: 1992, On exact D-optimal designs for regression models with correlated observations, Ann. Inst. Statist. Math. 44(2), 229–238.

    Article  MathSciNet  Google Scholar 

  • Brimkulov, U., Krug, G. and Savanov, V.: 1980, Numerical construction of exact experimental designs when the measurements are correlated (in Russian), Zavodskaya Laboratoria (Industrial Laboratory) 36, 435–442.

    Google Scholar 

  • Fedorov, V. and Flanagan, D.: 1998, Optimal monitoring network design based on mercer’s expansion of covariance kernel, Journal of Combinatorics, Information & System Sciences.

  • Glatzer, E.: 1999, Über Versuchsplanungalgorithmen bei korrelierten Beobachtungen (in German), Master’s thesis, Wirtschaftsuniversität Wien.

  • Müller-Gronbach, T.: 1996, Optimal designs for approximating the path of a stochastic process, Journal of Statistical Planning and Inference 49, 371–385.

    Article  MathSciNet  Google Scholar 

  • Müller, W.: 1995, An example of optimal design for correlated observations (in German), Österreichische Zeitschrift für Statistik 24(1), 9–15.

    Google Scholar 

  • Müller, W.: 1998, Spatial Data Collection, Contributions to Statistics, Physica Verlag, Heidelberg.

    Google Scholar 

  • Müller, W. and Pázman, A.: 1998, Design measures and extended information matrices for experiments without replications, Journal of Statistical Planning and Inference.

  • Näther, W.: 1985, Exact designs for regression models with correlated errors, Statistics 16(4), 479–484.

    Article  MathSciNet  Google Scholar 

  • Pázman, A.: 1986, Foundations of Optimum Experimental Design, Mathematics and Its Applications, D.Reidel, Dordrecht.

    Google Scholar 

  • Pázman, A. and Müller, W.: 1998, A new interpretation of design measures, in A. Atkinson, L. Pronzato and H. Wynn (eds), Model-Oriented Data Analysis 5, Physica, Heidelberg, pp. 239–246.

    Google Scholar 

  • Rasch, D., Hendrix, E. and Boer, E.: 1997, Replicationfree optimal designs in regression analysis, Computational Statistics 12, 19–32.

    MathSciNet  MATH  Google Scholar 

  • Sacks, J. and Ylvisaker, D.: 1966, Design for regression problems with correlated errors, Annals of Mathematical Statistics 37, 66–89.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the Slovak VEGA grant No. 1/4196/97.

Appendices

Appendix A: The first order derivative of the extended information matrix

For λ > 0 we have from (6)

$$\begin{array}{*{20}c}{{{\partial J_\kappa ^{(\gamma )}\left( {{\xi _\lambda }} \right)} \over {\partial \lambda }} = - \rho \sum\limits_{x,z,u \in {\cal X}} f (x)\left[ {C({\cal X}) + \rho W_\kappa ^{(\gamma )}\left( {{\xi _\lambda }} \right)} \right]_{x,u}^{ - 1}} \hfill \\ { \times \left[ {{\partial \over {\partial \lambda }}\ln {{\left[ {{{_\gamma {\xi _\lambda }} \over {_\gamma {\xi _\lambda }(u)}}} \right]}^\gamma }} \right]\left[ {C({\cal X}) + \rho W_\kappa ^{(\gamma )}\left( {{\xi _\lambda }} \right)} \right]_{u,z}^{ - 1}{f^T}(z),} \hfill \\ \end{array} $$

where ξλ = (1 − λ)μ + λη, and μ is supported on the whole χ.

So the derivative of the criterion function based on the information matrix \(J_\kappa ^{\left( \gamma \right)}\left( \xi \right)\) is

$${\partial \over {\partial \lambda }}{\rm{\Phi }}\left[ {J_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right] = - \rho \sum\limits_{u \in {\cal X}} {{d_\gamma }\left( {{\xi _\lambda },u} \right){\partial \over {\partial \lambda }}\ln {{\left[ {{{_\gamma {\xi _\lambda }} \over {_\gamma {\xi _\lambda }\left( u \right)}}} \right]}^\gamma },} $$

where

$${d_\gamma }\left( {\xi ,u} \right) = a_\gamma ^T\left( u \right)\nabla {\rm{\Phi }}\left[ {J_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right]{a_\gamma }\left( u \right)$$
((A.9))

and

$${a_\gamma }\left( u \right) = \sum\limits_{x \in {\cal X}} {\left[ {C\left( {\cal X} \right) + \rho W_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right]_{u,x}^{ - 1}f\left( x \right).} $$

By taking limits we obtain

$$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\Phi \left[ {J_\kappa ^{(\gamma )}\left( {{\xi _\lambda }} \right)} \right] = - \rho \sum\limits_{x \in {\cal X}} {\mathop {\lim }\limits_{\gamma \to 0} } \;{d_\gamma }(\mu ,x)\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} \left[ {{\partial \over {\partial \lambda }}\gamma {{\ln }_\gamma }{\xi _\lambda } - {\partial \over {\partial \lambda }}\gamma {{\ln }_\gamma }{\xi _\lambda }(x)} \right].$$
((A.10))

We have

$$\mathop {\lim }\limits_{\lambda \to 0} \ln \left( {{{_\gamma {\xi _\lambda }} \over {_\gamma {\xi _\lambda }\left( x \right)}}} \right) = \ln {{_\gamma \mu } \over {_\gamma \mu \left( x \right)}}.$$

Hence, we obtain, like in the proof of the Proposition in Appendix B

$$\mathop {\lim }\limits_{\lambda \to 0} {\left[ {C\left( {\cal X} \right) + \rho W_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right]^{ - 1}} = {\left[ {C\left( {\cal X} \right) + \rho W_\kappa ^{\left( \gamma \right)}\left( \mu \right)} \right]^{ - 1}},$$

and

$$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\left[ {C\left( {\cal X} \right) + \rho W_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right]^{ - 1}} = {\left[ {C\left( {\cal X} \right) + \rho V_\kappa ^{\left( \gamma \right)}\left( \mu \right)} \right]^{ - 1}}.$$

The limit derivative of ln(γξλ) and of lnγξλ(u) are given in Lemma 2 in Appendix B.

Note that in the case that μ(x) < κ or μmax < κ, the logarithm in Lemma 2 is multiplied by the number γ, which in the limit tends to zero. So in this case the limit derivative in (A.10) is infinitely larger than for the case μ(x) > κ, μmax > κ. Instead of (A.10) we then compute

$$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {1 \over \gamma }{\partial \over {\partial \lambda }}{\rm{\Phi }}\left[ {J_\kappa ^{\left( \gamma \right)}\left( {{\xi _\lambda }} \right)} \right]$$

This influences the algorithm which is described in Section 3.

Appendix B: Further Properties

Proposition: We have

$$\mathop {\lim }\limits_{\gamma \to 0} W_\kappa ^{\left( \gamma \right)}\left( \xi \right) = {V_\kappa }\left( \xi \right),$$

and

$$\mathop {\lim }\limits_{\gamma \to 0} J_\kappa ^{\left( \gamma \right)}\left( \xi \right) = \sum\limits_{x,z \in X} {f\left( x \right){{\left[ {C\left( {\cal X} \right) + \rho {V_\kappa }\left( \xi \right)} \right]}^{ - 1}}{f^T}\left( z \right)} ,$$

where Vκ(ξ) is a diagonal matrix with entries

$${\left[ {{V_\kappa }(\xi )} \right]_{x,x}} = \left\{ {\begin{array}{*{20}c}{\ln {\kappa \over {\xi (x)}};} & {{\rm{ if }}\xi (x) < \kappa } \\ {0;} & {{\rm{ if }}\xi (x) > \kappa .} \\ \end{array} } \right.$$

The proof follows directly from Lemma 1 given in the Appendix B. We note that [Vκ(ξ)]x,x can be continuously extended to the cases κ = ξ(x) and κ = ξmax, which are not considered in the Proposition.

Lemma 1:

If ξ(x) > κ, then

$$\mathop {\lim }\limits_{\gamma \to 0} \ln {\left( {{{_\gamma \xi } \over {_\gamma \xi \left( x \right)}}} \right)^\gamma } = 0.$$

If ξ(x) < κ, then

$$\mathop {\lim }\limits_{\gamma \to 0} \ln {\left( {{{_\gamma \xi } \over {_\gamma \xi \left( x \right)}}} \right)^\gamma } = \ln {\kappa \over {\xi \left( x \right)}} > 0.$$

Proof. We shall consider the terms in

$$\ln {\left( {{{\gamma \xi } \over {\gamma \xi (x)}}} \right)^\gamma } = \gamma \ln {\rm{[}}\gamma \xi {\rm{]}} - \gamma \ln {\rm{[}}\gamma \xi (x){\rm{]}}{\rm{.}}$$
  1. i)

    If ξ(x) > κ, then (4) implies limγ→0[γξ(x)] = ξ(x)−κ, hence limγ→0γ ln[γξ(x)] = 0.

  2. ii)

    Similarly, ξmax > κ ⇒ limγ→0 γln[γξ] = 0.

  3. iii)

    If ξ(x) < κ then from (4) we obtain

    $$\gamma \ln \left[ {_\gamma \xi \left( x \right)} \right] = \gamma \ln \kappa + \gamma \ln \left\{ {{{\left[ {1 + {t^{{1 \over \gamma }}}\left( x \right)} \right]}^\gamma } - 1} \right\},$$
    ((A.11))

    with \(t\left( x \right) = {{\xi \left( x \right)} \over \kappa } < 1\). By the Taylor formula of the function z → (1+z)γ in the neighborhood of z = 0, we have

    $${\left( {1 + z} \right)^\gamma } = 1 + \gamma z + {1 \over 2}\gamma \left( {\gamma - 1} \right){z^2} + o\left( {{z^2}} \right).$$

Hence from (A.11) we obtain

$$\begin{array}{*{20}c}{\gamma \ln {[_\gamma }\xi (x)] = \gamma \ln \kappa + \gamma \ln \left\{ {\gamma {t^{{1 \over \gamma }}}(x) + {1 \over 2}\gamma (\gamma - 1){t^{{2 \over \gamma }}}(x) + o\left( {{t^{{2 \over \gamma }}}(x)} \right)} \right\}} \\ { = \gamma \ln \kappa + \gamma \ln \left\{ {\gamma {t^{{1 \over \gamma }}}(x)} \right\} + \gamma \ln \left\{ {1 + {1 \over 2}(\gamma - 1){t^{{1 \over \gamma }}}(x) + o\left( {{t^{{1 \over 2}}}(x)} \right)} \right\}} \\ {{ \to _{\gamma \to 0}}\ln t(x) = \ln {{\xi (x)} \over \kappa }.} \\ \end{array} $$

Lemma 2:

For ξλ(x) = (1 − λ)μ(x) + λη(x), we have

$$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\ln \left[ {_\gamma {\xi _\lambda }\left( x \right)} \right] = {{\eta \left( x \right) - \mu \left( x \right)} \over {\mu \left( x \right) - \kappa }}\quad {\rm{if}}\;\mu \left( x \right) > \kappa ,$$
$$\begin{array}{*{20}c}{\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} \gamma {\partial \over {\partial \lambda }}\ln {[_\gamma }{\xi _\lambda }(x){\rm{]}} = {{\eta (x)} \over {\mu (x)}} - 1\quad {\rm{if }}\mu (x) < \kappa ,} \\ {\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\ln \left[ {_\gamma {\xi _\lambda }} \right] = {{{\mu _{\max }}} \over {{\mu _{\max }} - \kappa }}\left\{ {{E_{{B_\mu }}}\left[ {{{\eta (.)} \over {\mu (.)}}} \right] - 1} \right\}{\rm{ }}\quad {\rm{if }}{\mu _{\max }} > \kappa ,} \\ {\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} \gamma {\partial \over {\partial \lambda }}\ln \left[ {_\gamma {\xi _\lambda }} \right] = {E_{{B_\mu }}}\left[ {{{\eta (.)} \over {\mu (.)}}} \right] - 1\quad {\rm{ if }}{\mu _{\max }} < \kappa ,} \\ \end{array} $$

where

$${E_{{B_\mu }}}\left[ {{{\eta \left( . \right)} \over {\mu \left( . \right)}}} \right] = {1 \over {{N_{{B_\mu }}}}}\sum\limits_{x \in {B_\mu }} {{{\eta \left( x \right)} \over {\mu \left( x \right)}}} .$$

Proof. According to (4) we have

$${\partial \over {\partial \lambda }}\ln \left[ {_\gamma {\xi _\lambda }} \right] = {\partial \over {\partial \lambda }}\ln \left\{ {{{\left[ {{h_\lambda }\left( {{\xi _\lambda }} \right)} \right]}^\gamma } - \kappa } \right\},$$

where \({h_\gamma }\left( \xi \right) = {\kappa ^{{1 \over \gamma }}} + \sum\nolimits_{x \in {\cal X}} {\xi {{\left( x \right)}^{{1 \over \gamma }}}} \)

By direct differentiation we obtain

$$\begin{array}{*{20}c}{{\partial \over {\partial \lambda }}\ln {{\rm{[}}_\gamma }{\xi _\lambda }{\rm{]}} = {1 \over {{{\left[ {{h_\gamma }\left( {{\xi _\lambda }} \right)} \right]}^\gamma } - \kappa }}{{\left[ {{h_\gamma }\left( {{\xi _\lambda }} \right)} \right]}^{\gamma - 1}}\sum\limits_{x \in {\cal X}} {\xi _\lambda ^{{1 \over \gamma } - 1}} (x){{d{\xi _\lambda }(x)} \over {d\lambda }}} \\ {{ \to _{\lambda \to 0}}{{{{\left[ {{h_\gamma }(\mu )} \right]}^\gamma }} \over {{{\left[ {{h_\gamma }(\mu )} \right]}^\gamma } - \kappa }}{{\sum\nolimits_{x \in {\cal X}} {{\mu ^{{1 \over \gamma }}}} (x)} \over {{h_\gamma }(\mu )}}{\rm{E}}_\mu ^{\left( {{1 \over \gamma }} \right)}\left[ {{{\eta (.)} \over {\mu (.)}} - 1} \right]{\rm{,}}} \\ \end{array} $$
((A.12))

where \(E_\mu ^{\left( {{1 \over \gamma }} \right)}\) denotes the weighted mean with weights equal to \({{{\mu ^{{1 \over \gamma }}}\left( x \right)} \over {\sum\nolimits_{u \in {\cal X}} {{\mu ^{{1 \over \gamma }}}\left( u \right)} }}\).

Similarly

$$\mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\ln {{\rm{[}}_\gamma }{\xi _\lambda }(x){\rm{]}} = {{{{\left[ {{l_\gamma }(x)} \right]}^\gamma }} \over {{{\left[ {{l_\gamma }(x)} \right]}^\gamma } - \kappa }}\quad {{{\mu ^{{1 \over \gamma }}}(x)} \over {{l_\gamma }(x)}}\left[ {{{\eta (x)} \over {\mu (x)}} - 1} \right],$$
((A.13))

where \({l_\gamma }\left( x \right) = {\kappa ^{{1 \over \gamma }}} + {\mu ^{{1 \over \gamma }}}\left( x \right)\)

  1. i)

    Let μmax > κ. Then we obtain directly from (A.12)

    $$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\ln {{\rm{[}}_\gamma }{\xi _\lambda }] = {{{\mu _{\max }}} \over {{\mu _{\max }} - \kappa }}{E_{{B_\mu }}}\left[ {{{\eta (.)} \over {\mu (.)}} - 1} \right].$$
  2. ii)

    Similarly, if μ(x) > κ we obtain from (A.13)

    $$\mathop {\lim }\limits_{\gamma \to 0} \mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\ln {{\rm{[}}_\gamma }{\xi _\lambda }(x){\rm{]}} = {{\eta (x) - \mu (x)} \over {\mu (x) - \kappa }}$$
  3. iii)

    Suppose that μmax < κ, and denote \(s\left( x \right) = {{\mu \left( x \right)} \over \kappa } < 1\). From (A.12) we obtain

    $$\begin{array}{*{20}c}{\mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\gamma \ln {{\rm{[}}_\gamma }{\xi _\lambda }{\rm{]}} = {{{{\left[ {1 + \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \right]}^\gamma }} \over {{{\left[ {1 + \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \right]}^\gamma } - 1}}{{\gamma \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \over {\left[ {1 + \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \right]}}{\rm{E}}_\mu ^{\left( {{1 \over \gamma }} \right)}\left[ {{{\eta (.)} \over {\mu (.)}} - 1} \right]} \\ {{ \to _{\gamma \to 0}}{E_{{B_\mu }}}\left[ {{{\eta (.)} \over {\mu (.)}} - 1} \right]\mathop {\lim }\limits_{\gamma \to 0} {{\gamma \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \over {{{\left[ {1 + \sum\nolimits_{x \in {\cal X}} {{s^{{1 \over \gamma }}}} (x)} \right]}^\gamma } - 1}}{\rm{.}}} \\ \end{array} $$

    Using the Taylor formula, like in the proof of Lemma 1, we obtain that the last limit is equal to 1.

  4. iv)

    Suppose now, that μ(x) < κ. Then from (A.13) we obtain

    $$\begin{array}{*{20}c}{\mathop {\lim }\limits_{\lambda \to 0} {\partial \over {\partial \lambda }}\gamma \ln {{\rm{[}}_\gamma }{\xi _\lambda }(x){\rm{]}} = \gamma {{{{\left[ {1 + {s^{{1 \over \gamma }}}(x)} \right]}^\gamma }} \over {{{\left[ {1 + {s^{{1 \over \gamma }}}(x)} \right]}^\gamma } - 1}} \times {{{s^{{1 \over \gamma }}}(x)} \over {1 + {s^{{1 \over \gamma }}}(x)}}\left[ {{{\eta (x)} \over {\mu (x)}} - 1} \right]} \\ {{\rm{ }}{ \to _{\gamma \to 0}}\left[ {{{\eta (x)} \over {\mu (x)}} - 1} \right]\mathop {\lim }\limits_{\gamma \to 0} {{\gamma {s^{{1 \over \gamma }}}(x)} \over {{{\left[ {1 + {s^{{1 \over \gamma }}}(x)} \right]}^\gamma } - 1}},} \\ \end{array} $$

    and the last limit is equal to 1, which can be proved in the same way as in iii). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W.G., Pázman, A. An algorithm for the computation of optimum designs under a given covariance structure. Computational Statistics 14, 197–211 (1999). https://doi.org/10.1007/s001800050013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800050013

Keywords

Navigation