Skip to main content
Log in

Uncertainty quantification for functional dependent random variables

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper proposes a new methodology to model uncertainties associated with functional random variables. This methodology allows to deal simultaneously with several dependent functional variables and to address the specific case where these variables are linked to a vectorial variable, called covariate. In this case, the proposed uncertainty modelling methodology has two objectives: to retain both the most important features of the functional variables and their features which are the most correlated to the covariate. This methodology is composed of two steps. First, the functional variables are decomposed on a functional basis. To deal simultaneously with several dependent functional variables, a Simultaneous Partial Least Squares algorithm is proposed to estimate this basis. Second, the joint probability density function of the coefficients selected in the decomposition is modelled by a Gaussian mixture model. A new sparse method based on a Lasso penalization algorithm is proposed to estimate the Gaussian mixture model parameters and reduce their number. Several criteria are introduced to assess the methodology performance: its ability to approximate the functional variables probability distribution, their dependence structure and their features which explain the covariate. Finally, the whole methodology is applied on a simulated example and on a nuclear reliability test case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. www.cs.cmu.edu/~akshaykr/files/sgmm_paper.

References

  • Anstett-Collin F, Goffart J, Mara T, Denis-Vidal L (2015) Sensitivity analysis of complex models: coping with dynamic and static inputs. Reliab Eng Syst Saf 134:268–275

    Article  Google Scholar 

  • Bien J, Tibshirani RJ (2011) Sparse estimation of a covariance matrix. Biometrika 98:807–820

    Article  MathSciNet  MATH  Google Scholar 

  • Bongiorno E, Goia A (2015) Some insights about the small ball probability factorization for hilbert random elements. http://arxiv.org/abs/1501.04308

  • Bongiorno E, Goia A (2016) Classification methods for hilbert data based on surrogate density. Comput Stat Data Anal, 99, 204–222. http://arxiv.org/abs/1506.03571

  • Bongiorno EG, Salinelli E, Goia A, Vieu P (2014) Contributions in infinite-dimensional statistics and related topics. Societa Editrice Esculapio. doi:10.15651/978-88-748-8763-7

  • Conover WJ (1971) Practical Nonparametric Statistics. Wiley, New York

  • De Rocquigny E, Devictor N, Tarantola S (2008) Uncertainty in industrial practice. Wiley, New York

    Book  MATH  Google Scholar 

  • Delaigle A, Hall P (2010) Defining probability density for a distribution of random functions. Ann Stat 38(2):1171–1193

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B (Methodological) 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 9:432–441

    Article  MATH  Google Scholar 

  • Fromont M, Laurent B, Lerasle M, Reynaud-Bouret P (2012) Kernels based tests with non-asymptotic bootstrap approaches for two-sample problem. In: 25th annual conference on learning theory 23:1–22

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin

    Book  MATH  Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal, 146, 1–6. Special issue on statistical models and methods for high or infinite dimensional spaces

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Helton J, Johnson J, Sallaberry C, Storlie C (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91(10–11):1175–1209

    Article  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Höskuldsson A (1988) PLS regression methods. J Chemom 2:211–228

    Article  Google Scholar 

  • Hyndman RJ, Shang HL (2010) Rainbow plots, bagplots, and boxplots for functional data. J Computat Graph Stat 19:29–45

    Article  MathSciNet  Google Scholar 

  • Jacques J, Preda C (2014a) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255

    Article  MathSciNet  Google Scholar 

  • Jacques J, Preda C (2014b) Model-based clustering for multivariate functional data. Computat Stat Data Anal 71:92–106

    Article  MathSciNet  Google Scholar 

  • Loève M (1955) Probability theory. Springer, Berlin

    MATH  Google Scholar 

  • Ma X, Zabaras N (2011) Kernel principal component analysis for stochastic input model generation. J Comput Phys 230(19):7311–7331

    Article  MathSciNet  MATH  Google Scholar 

  • Marrel A, Iooss B, Van Dorpe F, Volkova E (2008) An efficient methodology for modeling complex computer codes with gaussian processes. Comput Stat Data Anal 52(10):4731–4744

    Article  MathSciNet  MATH  Google Scholar 

  • Mclachlan J, Krishnan T (1997) The EM algorithm and extension. Wiley inter-science, New York

    MATH  Google Scholar 

  • Oakley J, O’Hagan A (2002) Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 89(4):769–784

    Article  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos Mag J Sci 2:559–572

    Article  MATH  Google Scholar 

  • Popelin AL, Iooss B (2013) Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients. In: SNA+ MC 2013—Joint international conference on supercomputing in nuclear applications and Monte Carlo

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, Springer Series in Statistics, Berlin

    Book  MATH  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423. doi:10.2307/2245858

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Scott DW (2009) Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, Hoboken

    Google Scholar 

  • Van Deun K, Smilde A, van der Werf M, Kiers H, Van Mechelen I (2009) A structured overview of simultaneous component based data integration. BMC Bioinform 10:246–261

    Article  Google Scholar 

  • Wan J, Zabaras N (2014) A probabilistic graphical model based stochastic input model construction. J Comput Phys 272:664–685

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H (2013) Coordinate descent algorithm for covariance graphical Lasso. Stat Comput 6:1–9

    Google Scholar 

  • Welch WJ, Buck RJ, Sacks J, Wynn HP, Mitchell TJ, Morris MD (1992) Screening, predicting, and computer experiments. Technometrics 34(1):15–25

    Article  Google Scholar 

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. Academic Press, Cambridge

    MATH  Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Nanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanty, S., Helbert, C., Marrel, A. et al. Uncertainty quantification for functional dependent random variables. Comput Stat 32, 559–583 (2017). https://doi.org/10.1007/s00180-016-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0676-0

Keywords

Navigation