Skip to main content
Log in

Bayesian accelerated life testing under competing log-location-scale family of causes of failure

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article provides Bayesian analyses of data arising from multi-stress accelerated life testing of series systems. The component log-lifetimes are assumed to independently belong to some log-concave location-scale family of distributions. The location parameters are assumed to depend on the stress variables through a linear stress translation function. Bayesian analyses and associated predictive inference of reliability characteristics at usage stresses are performed using Gibbs sampling from the joint posterior. The developed methodology is numerically illustrated by analyzing a real data set through Bayesian model averaging of the two popular cases of Weibull and log-normal, with the later getting a special focus in this article as a slightly easier example of the log-location-scale family. A detailed simulation study is also carried out to compare the performance of various Bayesian point estimators for the log-normal case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.itl.nist.gov/div898/handbook/apr/section1/apr153.htm.

References

  • Basu S, Sen A, Banerjee M (2003) Bayesian analysis of competing risks with partially masked cause of failure. J R Stat Soc Ser C (Appl Stat) 52:77–93

    Article  MathSciNet  MATH  Google Scholar 

  • Berger J (2006) The case for objective Bayesian analysis. Bayesian Anal 1:385–402

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Berger JO, Pericchi LR (1996) The intrinsic Bayes factor for model selection and prediction. J Am Stat Assoc 91:109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Bunea C, Mazzuchi TA (2006) Competing failure modes in accelerated life testing. J Stat Plan Inference 136:1608–1620

    Article  MathSciNet  MATH  Google Scholar 

  • Carlin BP, Chib S (1995) Bayesian model choice via Markov chain Monte Carlo methods. J R Stat Soc Ser B (Methodol) 57:473–484

    MATH  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904

    Article  MathSciNet  MATH  Google Scholar 

  • Fan Th, Hsu Tm (2014) Constant stress accelerated life test on a multiple-component series system under Weibull lifetime distributions. Commun Stat Theory Methods 43:2370–2383

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández C, Steel MF (1999) Reference priors for the general location-scale modelm. Stat Probab Lett 43:377–384

    Article  MATH  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. Chapman and Hall/CRC, Boca Raton

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41:337–348

    Article  MATH  Google Scholar 

  • Godsill SJ (2001) On the relationship between Markov chain Monte Carlo methods for model uncertainty. J Comput Graph Stat 10:230–248

    Article  MathSciNet  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Hauschildt M, Gall M, Thrasher S, Justison P, Hernandez R, Kawasaki H, Ho PS (2007) Statistical analysis of electromigration lifetimes and void evolution. J Appl Phys 101(043):523

    Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–401

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang R (2011) Analysis of accelerated life test data involving two failure modes. Adv Mater Res 211–212:1002–1006

    Google Scholar 

  • Kadane JB, Lazar NA (2004) Methods and criteria for model selection. J Am Stat Assoc 99:279–290

    Article  MathSciNet  MATH  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Kim CM, Bai DS (2002) Analyses of accelerated life test data under two failure modes. Int J Reliab Qual Saf Eng 9:111–125

    Article  Google Scholar 

  • Kim JS, Yum B (2008) Selection between Weibull and lognormal distributions: a comparative simulation study. Comput Stat Data Anal 53:477–485

    Article  MathSciNet  MATH  Google Scholar 

  • Kim SW, Ibrahim JG (2000) On Bayesian inference for proportional hazards models using noninformative priors. Lifetime Data Anal 6:331–341

    Article  MathSciNet  MATH  Google Scholar 

  • Klein JP, Basu AP (1981) Weibull accelerated life tests when there are competing causes of failure. Commun Stat Theory Methods 10:2073–2100

    Article  MathSciNet  MATH  Google Scholar 

  • Klein JP, Basu AP (1982a) Accelerated life testing under competing exponential failure distributions. IAPQR Trans 7:1–20

    MathSciNet  MATH  Google Scholar 

  • Klein JP, Basu AP (1982b) Accelerated life tests under competing Weibull causes of failure. Commun Stat Theory Methods 11:2271–2286

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Manglick A (2004) Discriminating between the Weibull and log-normal distributions. Nav Res Logist 51(6):893–905

    Article  MathSciNet  MATH  Google Scholar 

  • Liu JS, Wu YN (1999) Parameter expansion for data augmentation. J Am Stat Assoc 94:1264–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  • Mukhopadhyay C, Basu S (2007) Bayesian analysis of masked series system lifetime data. Commun Stat Theory Methods 36:329–348

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson W (1980) Accelerated life testing-step-stress models and data analyses. Reliab IEEE Trans 29:103–108

    Article  MATH  Google Scholar 

  • Nelson WB (1990) Accelerated testing: statistical models, test plans and data analysis. Wiley, New York

    Book  MATH  Google Scholar 

  • Pascual F (2008) Accelerated life test planning with independent Weibull competing risks. Reliab IEEE Trans 57:435–444

    Article  Google Scholar 

  • Pascual F (2010) Accelerated life test planning with independent lognormal competing risks. J Stat Plan Inference 140:1089–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Pathak PK, Singh AK, Zimmer WJ (1991) Bayes estimation of hazard & acceleration in accelerated testing. Reliab IEEE Trans 40:615–621

    Article  MATH  Google Scholar 

  • Roy S, Mukhopadhyay C (2013) Bayesian accelerated life testing under competing exponential causes of failure. In: John B, Acharya UH, Chakraborty AK (eds) Quality and reliability engineering—recent trends and future directions. Allied Publishers Pvt. Ltd., New Delhi, pp 229–245

    Google Scholar 

  • Roy S, Mukhopadhyay C (2014) Bayesian accelerated life testing under competing Weibull causes of failure. Commun Stat Theory Methods 43:2429–2451

    Article  MathSciNet  MATH  Google Scholar 

  • Roy S, Mukhopadhyay C (2015) Maximum likelihood analysis of multi-stress ALT data of series systems with competing log-normal causes of failure. J Risk Reliab 229:119–130

    Google Scholar 

  • Tan Y, Zhang C, Chen X (2009) Bayesian analysis of incomplete data from accelerated life testing with competing failure modes. In: 8th international conference on reliability, maintainability and safety, pp 1268 –1272

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–540

    Article  MathSciNet  MATH  Google Scholar 

  • Tojeiro CAV, Louzada-Neto F, Bolfarine H (2004) A Bayesian analysis for accelerated lifetime tests under an exponential power law model with threshold stress. J Appl Stat 31:685–691

    Article  MathSciNet  MATH  Google Scholar 

  • Van Dorp JR, Mazzuchi TA (2004) A general Bayes exponential inference model for accelerated life testing. J Stat Plan Inference 119:55–74

    Article  MathSciNet  MATH  Google Scholar 

  • Van Dorp JR, Mazzuchi TA (2005) A general Bayes weibull inference model for accelerated life testing. Reliab Eng Syst Saf 90:140–147

    Article  Google Scholar 

  • Xu A, Tang Y (2011) Objective Bayesian analysis of accelerated competing failure models under Type-I censoring. Comput Stat Data Anal 55:2830–2839

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc 81:446–451

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Meeker WQ (2006) Bayesian methods for planning accelerated life tests. Technometrics 48:49–60

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully thank three anonymous referees for their constructive comments, which greatly helped enhance both the content and presentation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Roy.

Appendices

Appendix 1: Proof of Theorem 1

It is enough to show that \(\log L_j\left( \varvec{\psi }_j|{\mathscr {D}}\right) \) (\(=\ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right) \), say) is a concave function of \(\theta _{kj}\) and \(\tau _j\). From Eq. (8), one gets

$$ \begin{aligned} \ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right)= & {} n_j \log \tau _j + \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i=j \end{array}} \log f_j\left( {\tau _j}\left( t^{i}-{\mathbf s_j^i}'\varvec{\theta }_{j}\right) \right) \\&+ \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i \ne j \end{array}}\log \overline{F}_j\left( {\tau _{j}}\left( t^i-{\mathbf s_j^i}'\varvec{\theta }_j\right) \right) \\&+ \sum _{i=n+1}^N \log \overline{F}_j\left( {\tau _{j}}\left( t^i-{\mathbf s_j^i}'\varvec{\theta }_j\right) \right) , \end{aligned}$$

which implies

$$ \begin{aligned} \frac{\partial ^{2} \ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right) }{\partial \theta _{kj}^2}= & {} \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i=j \end{array}} \left( -\tau _j s_{kj}^i\right) ^2 \,\,\frac{\partial ^{2} \log f_j(u_j^i)}{\partial {u_{j}^i}^2} + \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i \ne j \end{array}} \left( -\tau _j s_{kj}^i\right) ^2 \,\,\frac{\partial ^{2} \log \overline{F}_j(u_j^i)}{\partial {u_{j}^i}^2}\\&+ \sum _{i=n+1}^N \left( -\tau _j s_{kj}^i\right) ^2 \,\,\frac{\partial ^{2} \log \overline{F}_j(u_j^i)}{\partial {u_{j}^i}^2}, \end{aligned}$$

and

$$ \begin{aligned} \frac{\partial ^{2} \ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right) }{\partial \tau _j^2}= & {} -\frac{n_j}{\tau _j^2} + \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i=j \end{array}} \left( \frac{u_j^i}{\tau _j}\right) ^2 \,\,\frac{\partial ^{2} \log f_j(u_j^i)}{\partial {u_{j}^i}^2} + \displaystyle \sum _{\begin{array}{c} 1 \le i \le n\\ \& I^i \ne j \end{array}} \left( \frac{u_j^i}{\tau _j}\right) ^2 \,\,\frac{\partial ^{2} \log \overline{F}_j(u_j^i)}{\partial {u_{j}^i}^2} \\&+ \sum _{i=n+1}^N \left( \frac{u_j^i}{\tau _j}\right) ^2 \,\,\frac{\partial ^{2} \log \overline{F}_j(u_j^i)}{\partial {u_{j}^i}^2}, \end{aligned}$$

where \(u_j^i=\tau _j\left( t^i-{\mathbf s_j^i}'\varvec{\theta }_j\right) \). Note that \(\frac{\partial ^{2} \log f_j(u_j^i)}{\partial {u_{j}^i}^2}<0\), since \(f_j(\cdot )\) is log-concave. Furthermore, the log-concavity of \(f_j(\cdot )\) implies the same for \(\overline{F}_j(\cdot )\) (see Basu et al. 2003). Thus, \(\frac{\partial ^{2} \log \overline{F}_j(u_j^i)}{\partial {u_{j}^i}^2}<0\). Therefore, \(\frac{\partial ^{2} \ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right) }{\partial \theta _{kj}^2}< 0\) and \(\frac{\partial ^{2} \ell _j\left( \varvec{\psi }_j|{\mathscr {D}}\right) }{\partial \tau _j^2}<0\), which completes the proof.

Appendix 2: Acronyms and notations

BF:

Bayes’ factor

BMA:

Bayesian Model Averaging

h.r.:

Hazard rate

MCMC:

Markov Chain Monte Carlo

MLE:

Maximum likelihood estimate

MTTF:

Mean time to failure

p.d.f.:

Probability density function

SD:

Standard deviation

SE:

Standard error

s.f.:

Survival function

J, j :

Number of components in series system and dummy in \(\{1,\ldots ,J\}\)

K, k :

Number of stress variables and and dummy in \(\{1,\ldots ,K\}\)

N, i :

Number of systems put on an ALT and dummy in \(\{1,\ldots ,N (n)\}\)

n :

Number of failed systems in an ALT

\(X_j\), \(Y_j\) :

Lifetime and log-lifetime of the jth component

T, I :

System log-lifetime and cause of failure

\({\mathbf Z}=(Z_1,\ldots ,Z_K)'\) :

\(K\times 1\) vector of stress variables

U, u :

A variable U and its observed value with or without an i in the super-script (like \(U^i\) or \(u^i\)) for the ith system

\(f(\cdot |\cdot )\), \(\overline{F}\left( \cdot |\cdot \right) \), \(h\left( \cdot |\cdot \right) \) :

p.d.f., s.f., and h.r. of random variables

\(g_{kj}(\cdot )\) :

Known transformation of the kth stress variable acting on the jth component of the system

\({\mathbf s_j}=(s_{1j},\ldots ,s_{Kj})'\, \text {with}\,\, s_{kj}=g_{kj}(z_k)\) :

\(K\times 1\) vector of transformed stress variables for the jth component

\(\mathbf S_j={[\mathbf s_j^1,\ldots ,\mathbf s_j^N]}'\) :

\(N \times K\) stress matrix corresponding to component j

\(\phi (\cdot )\), \(\overline{\varPhi }(\cdot )\) :

p.d.f. and s.f. of the standard normal distribution

\(\varvec{\theta }_j=(\theta _{1j},\ldots ,\theta _{Kj})'\), \(\varvec{\theta }=(\theta _1',\ldots ,\theta _J')'\) :

\(K\times 1\) and \(KJ\times 1\) vectors of STF parameters for the jth component and system

\(\mu _{j}(\varvec{\theta }_{j}, \mathbf {z})\), \(\tau _j\), \(\sigma _j^2\) :

STF (location) and scale parameters of \(Y_j\) and its variance when normal

\(\varvec{\psi }_j=(\varvec{\theta }_j',\tau _j)'\), \(\varvec{\psi }=(\varvec{\psi }_1',\ldots ,\varvec{\psi }_J')'\) :

\((K+1)\times 1\) and \((KJ+J)\times 1\) vectors of lifetime parameters for the jth component and system

\(\triangle \) :

A model-independent quantity

\({\mathscr {D}}\), \(\mathscr {Y}_j\), \({\mathscr {Y}}\) :

Observed, augmented and complete data

\(L_j\left( \varvec{\psi }_j|{\mathscr {D}}\right) \), \(L_j(\varvec{\psi }_j|{\mathscr {Y}})\), \(L\left( \varvec{\psi }|{\mathscr {D}}\right) \) :

Likelihood function of \(\varvec{\psi }_j\) and \(\varvec{\psi }\) given \({\mathscr {D}}\) or \({\mathscr {Y}}\)

\(\pi (\cdot ), \pi (\cdot |{\mathscr {D}}), \pi (\cdot |{\mathscr {Y}})\) :

Prior and posterior of relevant quantities usually clear from the context

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, C., Roy, S. Bayesian accelerated life testing under competing log-location-scale family of causes of failure. Comput Stat 31, 89–119 (2016). https://doi.org/10.1007/s00180-015-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0602-x

Keywords

Navigation