Skip to main content
Log in

Smoothing splines using compactly supported, positive definite, radial basis functions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we develop a fast algorithm for a smoothing spline estimator in multivariate regression. To accomplish this, we employ general concepts associated with roughness penalty methods in conjunction with the theory of radial basis functions and reproducing kernel Hilbert spaces. It is shown that through the use of compactly supported radial basis functions it becomes possible to recover the band structured matrix feature of univariate spline smoothing and thereby obtain a fast computational algorithm. Given n data points in R 2, the new algorithm has complexity O(n 2) compared to O(n 3), the order for the thin plate multivariate smoothing splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlberg JH, Nilson EN, Walsh JL (1967) The theory of splines and their applications. Academic Press, New York

    MATH  Google Scholar 

  • Anselone PM, Laurent PJ (1968) A general method for the construction of interpolating or smoothing spline functions. Numerische Mathematik 12: 66–82

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter BJC, Sivakumar N, Ward JD (1994) Regarding the p-norms of radial basis interpolation matrices. Constr Approx 10: 451–468

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet A, Thomas-Agnan C (2004) Reproducing kernel Hilbert spaces in probability and statistics. Kluwer, New York

    Book  MATH  Google Scholar 

  • Buhmann MD (1998) Radial functions on compact support. Proc Edinb Math Soc 41: 33–46

    Article  MathSciNet  Google Scholar 

  • Buhmann MD (2000) A new class of radial functions with compact support. Math Comput 70: 307–318

    Article  MathSciNet  Google Scholar 

  • Chui CK (1988) Multivariate splines. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline function: estimating the correct degree of smoothing by the method of cross-validation. Numerische Mathematik 3: 377–403

    MathSciNet  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, Hoboken

    Google Scholar 

  • De Boor C (1978) A practical guide to splines. Springer, New York

    Book  MATH  Google Scholar 

  • Duchon J (1977) Splines minimizing rotation-invariant semi-norms in sobolev spaces. Constr Theory Funct Several Var 1: 85–100

    Article  MathSciNet  Google Scholar 

  • Eubank RL (1988) Spline smoothing and nonparametric regression. Marcel Dekker, New York

    MATH  Google Scholar 

  • Gibbs NE, Poole WG, Stockmeyer PK (1976) An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J Numer Anal 13: 236–250

    Article  MathSciNet  MATH  Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman & Hall, London

    MATH  Google Scholar 

  • Gu C (2002) Smoothing spline anova models. Springer, New York

    MATH  Google Scholar 

  • Hickernell FJ, Hon YC (1999) Radial basis function approximations as smoothing splines. Appl Math Comput 102: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson MF, deHoog FR (1985) Smoothing noisy data with spline functions. Numerische Mathematik 47: 99–106

    Article  MathSciNet  MATH  Google Scholar 

  • Lyche T, Schumaker LL (1973) Computation of smoothing and interpolating natural splines via local bases. SIAM J Numer Anal 10: 1027–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Reinsch CH (1971) Smoothing by spline functions. II. Numerische Mathematik 16: 451–454

    Article  MathSciNet  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39: 811–841

    Article  MathSciNet  Google Scholar 

  • Thomas-Agnan C (1991) Spline functions and stochastic filtering. Ann Stat 19: 1512–1527

    Article  MathSciNet  MATH  Google Scholar 

  • Villalobos MA, Wahba G (1983) Multivariate thin plate spline estimates for the posterior probabilities in the classification problem. Commun Stat Theory Methods 12: 1449–1479

    Article  MathSciNet  MATH  Google Scholar 

  • Villalobos MA, Wahba G (1987) Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities. J Am Stat Assoc 82: 239–248

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba G (1981) Spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 2: 5–16

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Pennsylvania

    Book  MATH  Google Scholar 

  • Wahba G, Wendelberger J (1980) Some new mathematical methods for variational objective analysis using splines and cross validation. Mon Weather Rev 108: 1122–1143

    Article  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4: 389–396

    Article  MathSciNet  MATH  Google Scholar 

  • Wendland H (2002) Scattered data modelling by radial and related functions. Habilitation Thesis, Mathematics, University of Gottingen, Göttingen, Germany

  • Whittaker ET (1923) On a new method of graduation. Proc Edinb Math Soc 41: 63–75

    Google Scholar 

  • Wu Z (1995) Compactly supported positive definite radial functions. Adv Comput Math 4: 283–292

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G. Smoothing splines using compactly supported, positive definite, radial basis functions. Comput Stat 27, 573–584 (2012). https://doi.org/10.1007/s00180-011-0277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0277-x

Keywords

Navigation