Skip to main content
Log in

Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Bayesian multiple change-point models are built with data from normal, exponential, binomial and Poisson distributions with a truncated Poisson prior for the number of change-points and conjugate prior for the distributional parameters. We applied Annealing Stochastic Approximation Monte Carlo (ASAMC) for posterior probability calculations for the possible set of change-points. The proposed methods are studied in simulation and applied to temperature and the number of respiratory deaths in Seoul, South Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barry D, Hartigan JA (1993) A Bayesian analysis for change-point problems. J Am Stat Assoc 88: 309–319

    Article  MATH  MathSciNet  Google Scholar 

  • Belisle P, Joseph L, MacGibbon B, Wolfson DB, Berger R (1998) Change-point analysis of neuron spike train data. Biometrics 54: 113–123

    Article  MATH  Google Scholar 

  • Braga ALF, Zanobetti A, Schwartz I J (2002) The Effect of weather on respiratory and cardiovascular deaths in 12 U.S. Cities. Environ Health Perspect 110(9): 859–863

    Google Scholar 

  • Carlin BP, Gelfand AE, Smith AFM (1992) Hierarchical Bayesian analysis of change point problems. Appl Stat 41: 389–405

    Article  MATH  Google Scholar 

  • Celeux G, Forbes F, Robert CP, Titterington DM (2006) Rejoinder. Bayesian Stat 1: 701–796

    Article  MathSciNet  Google Scholar 

  • Chernoff H, Zacks S (1964) Estimating the current mean of a normal distribution which is subject to changes in time. Ann Math Stat 35: 999–1018

    Article  MATH  MathSciNet  Google Scholar 

  • Chib S (1998) Estimation and comparison of multiple change-point models. J Econom 86: 221–241

    Article  MATH  MathSciNet  Google Scholar 

  • Fearnhead P (2006) Exact and efficient Bayesian inference for multiple changepoint problems. Stat Comp 16: 203–213

    Article  MathSciNet  Google Scholar 

  • Filleul L, Vandentorren S, Baldi I, Tessier JF (2001) Daily respiratory mortality and PM10 pollution in Mexico City. Euro Respir J 17: 1055–1056

    Article  Google Scholar 

  • Gauvin S, Zmirou D, Pin I, Quentin J, Balducci F, Boudet C, Poizeau D, Brambilla C (1999) Short-term effect of exposure to suspended particulate matter (PM10) on the respiratory function of urban asthmatic and control adults. J Environ Med 1: 71–79

    Article  Google Scholar 

  • Gelfand A, Smith A (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85: 398–409

    Article  MATH  MathSciNet  Google Scholar 

  • Gelman A, Roberts GO, Gilks WR (1996) Efficient Metropolis jumping rules. Bayesian Stat 5: 599–607

    MathSciNet  Google Scholar 

  • Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian data analysis. Chapman and Hall, New York

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732

    Article  MATH  MathSciNet  Google Scholar 

  • Hawkins DM (2001) Finding multiple change-point models to data. Comp Stat Data Anal 37: 323–341

    Article  MATH  MathSciNet  Google Scholar 

  • Hinkley DV (1970) Inference about the change-point in a sequence of random variables. Biometrika 57: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  • Kander Z, Zacks S (1966) Test procedure for possible changes in parameter of statistical distributions occurring at unknown time points. Ann Math Stat 37: 1196–1210

    Article  MATH  MathSciNet  Google Scholar 

  • Kass RE, Raftery A (1995) Bayes factors. J Am Stat Assoc 90: 773–795

    Article  MATH  Google Scholar 

  • Koop GM, Potter SM (2004) Forecasting and estimating multiple change-point models with an unknown number of change-points, Federal Reserve Bank of New York Staff Reports, no. 196

  • Liang F (2007) Annealing stochastic approximation Monte Carlo for neural network training. Mach Learn 68(3): 201–233

    Article  Google Scholar 

  • Liang F, Wong WH (2000) Evolutionary Monte Carlo applications to C p model sampling and change-point problems. Stat Sinica 10: 317–342

    MATH  Google Scholar 

  • Liang F, Liu C, Carroll R (2007) Stochastic approximation in Monte Carlo computation. J Am Stat Assoc 102: 305–320

    Article  MATH  MathSciNet  Google Scholar 

  • Lupo AR, Kelsey EP, McCoy EA, Halcomb C, Aldrich E, Allen SN, Akyuz A, Skellenger S, Beiger DG, Wise E, Schmidt D, Edwards M (2003) The presentation of temperature information in television broadcasts: what is normal?. Natl Weather Dig 27(4): 53–58

    Google Scholar 

  • Maguire BA, Pearson ES, Wynn AHA (1952) The time intervals between industrial accidents. Biometrika 38: 168–180

    Google Scholar 

  • Nevel’son MB, Has’minskii RZ (1973) Stochastic approximation and recursive estimation. American Mathematical Society, Providence RI

    MATH  Google Scholar 

  • Raftery AE, Akman VE (1986) Bayesian analysis of a Poisson process with a change-point. Biometrika 73: 85–89

    Article  MathSciNet  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22: 400–407

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz J (1994) Nonparametric smoothing in the analysis of air pollution and respiratory illness. Can J Stat 22(4): 471–487

    Article  Google Scholar 

  • Smith AFM (1975) A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 62: 407–416

    Article  MATH  MathSciNet  Google Scholar 

  • Stephens DA (1994) Bayesian retrospective multiple-change-point identification. Appl Stat 43: 159–178

    Article  MATH  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions (with discussion). Ann Stat 22: 1701–1762

    Article  MATH  MathSciNet  Google Scholar 

  • Venter JH, Steel SJ (1996) Finding multiple abrupt change-points. Comp Stat Data Anal 22: 481–504

    Article  MATH  MathSciNet  Google Scholar 

  • Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86: 2050–2053

    Article  Google Scholar 

  • Yao YC (1984) Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches. Ann Stat 12: 1434–1447

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehee Kim.

Additional information

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (No. R01-2008-000-10133-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Cheon, S. Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo. Comput Stat 25, 215–239 (2010). https://doi.org/10.1007/s00180-009-0172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-009-0172-x

Keywords

Navigation