Skip to main content
Log in

Computation of reference Bayesian inference for variance components in longitudinal studies

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Generalized linear mixed models (GLMMs) have been applied widely in the analysis of longitudinal data. This model confers two important advantages, namely, the flexibility to include random effects and the ability to make inference about complex covariances. In practice, however, the inference of variance components can be a difficult task due to the complexity of the model itself and the dimensionality of the covariance matrix of random effects. Here we first discuss for GLMMs the relation between Bayesian posterior estimates and penalized quasi-likelihood (PQL) estimates, based on the generalization of Harville’s result for general linear models. Next, we perform fully Bayesian analyses for the random covariance matrix using three different reference priors, two with Jeffreys’ priors derived from approximate likelihoods and one with the approximate uniform shrinkage prior. Computations are carried out via the combination of asymptotic approximations and Markov chain Monte Carlo methods. Under the criterion of the squared Euclidean norm, we compare the performances of Bayesian estimates of variance components with that of PQL estimates when the responses are non-normal, and with that of the restricted maximum likelihood (REML) estimates when data are assumed normal. Three applications and simulations of binary, normal, and count responses with multiple random effects and of small sample sizes are illustrated. The analyses examine the differences in estimation performance when the covariance structure is complex, and demonstrate the equivalence between PQL and the posterior modes when the former can be derived. The results also show that the Bayesian approach, particularly under the approximate Jeffreys’ priors, outperforms other procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Alfó AM, Aitkin M (2006) Variance component models for longitudinal count data with baseline information: epilepsy data revisited. Statist Comp 16: 231–238

    Article  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Statist Assoc 88: 9–25

    Article  MATH  Google Scholar 

  • Breslow NE, Lin X (1995) Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika 82: 81–91

    Article  MATH  MathSciNet  Google Scholar 

  • Christiansen CL, Morris CN (1997) Hierarchical Poisson regression modeling. J Am Statist Assoc 92: 618–632

    Article  MATH  MathSciNet  Google Scholar 

  • Corbeil RR, Searle SR (1976) Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics 18: 31–38

    Article  MATH  MathSciNet  Google Scholar 

  • Crainiceanu CM, Ruppert D (2004) Likelihood ratio tests in linear mixed models with one variance component. J Roy Statist Soc Ser B 66: 165–185

    Article  MATH  MathSciNet  Google Scholar 

  • Daniels MJ, Kass RE (1999) Nonconjugate Bayesians estimation of covariance matrices and its use in hierarchical models. J Am Statist Assoc 94: 1254–1263

    Article  MATH  MathSciNet  Google Scholar 

  • Daniels MJ, Kass RE (2001) Shrinkage estimators for covariance matrices. Biometrics 57: 1173–1184

    Article  MathSciNet  Google Scholar 

  • Daniels MJ, Zhao YD (2003) Modelling the random effects covariance matrix in longitudinal data. Stat Med 22: 1631–1647

    Article  Google Scholar 

  • Harville DA (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61: 383–385

    Article  MATH  MathSciNet  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Statist Assoc 72: 320–338

    Article  MATH  MathSciNet  Google Scholar 

  • Hsiao CK, Tsai MY, Chen HM (2005) Inference of nested variance components in a longitudinal Myopia intervention trial. Stat Med 24: 3251–3267

    Article  MathSciNet  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comp Graph Statist 5: 299–314

    Article  Google Scholar 

  • Jennrich RJ, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42: 805–820

    Article  MATH  MathSciNet  Google Scholar 

  • Karim MR, Zeger SL (1992) Generalized linear models with random effects; salamander mating revisited. Biometrics 48: 631–644

    Article  Google Scholar 

  • Leppik IE et al (1985) A double-blind crossover evaluation of progabide in partial seizures. Neurology 35: 285

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Natarajan R, Kass RE (2000) Reference Bayesian methods for generalized linear mixed models. J Am Statist Assoc 95: 227–237

    Article  MATH  MathSciNet  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545–554

    Article  MATH  MathSciNet  Google Scholar 

  • Pauler DK, Wakefield JC, Kass RE (1999) Bayes factors and approximations for variance component models. J Am Statist Assoc 94: 1242–1253

    Article  MATH  MathSciNet  Google Scholar 

  • Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86: 677–690

    Article  MATH  MathSciNet  Google Scholar 

  • Pourahmadi M (2000) Maximum likelihood estimation for generalized linear models for multivariate normal covariance matrix. Biometrika 87: 425–435

    Article  MATH  MathSciNet  Google Scholar 

  • Robert CP (2001) The Bayesian choice: a decision theoretic motivation, 2nd edn. Springer, New York

    Google Scholar 

  • Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J Am Statist Assoc 82: 605–610

    Article  MATH  MathSciNet  Google Scholar 

  • Shih YF et al (2001) An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol Scan 79: 233–236

    Article  Google Scholar 

  • Spiegelhalter DJ (2001) Bayesian methods for cluster randomized trials with continuous responses. Stat Med 20: 435–452

    Article  Google Scholar 

  • Steele BM (1996) A modified EM algorithm for estimation in generalized mixed models. Biometrics 52: 1295–1310

    Article  MATH  MathSciNet  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects models. Biometrics 50: 1171–1177

    Article  MATH  Google Scholar 

  • Strawderman WE (1971) Proper Bayes estimators of the multivariate normal mean. Ann Math Statist 42: 385–388

    Article  MATH  MathSciNet  Google Scholar 

  • Thall PF, Vail SC (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics 46: 657–671

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfinger RD, Kass RE (2000) Nonconjugate Bayesian analysis of variance component models. Biometrics 56: 768–774

    Article  MATH  Google Scholar 

  • Wolfinger RD, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Statist Comp Simul 4: 233–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuhsing K. Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, MY., Hsiao, C.K. Computation of reference Bayesian inference for variance components in longitudinal studies. Comput Stat 23, 587–604 (2008). https://doi.org/10.1007/s00180-007-0100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-007-0100-x

Keywords

Navigation