Skip to main content
Log in

Surface characteristics of Ti-5Al-2.5Sn in electrical discharge machining using negative polarity of electrode

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A large number of parameters significantly affect the performance of electrical discharge machining (EDM) which is a non-conventional technique. The choice of the EDM parameters depends on workpiece-electrode material combination. So, the selection of parameters becomes intricate. This manuscript presents the surface characteristics of the machined surface in EDM on Ti-5Al-2.5Sn titanium alloy. The surface roughness and the microstructure of the machined surface are explored for different EDM parameters and electrode materials. Experimentation was accomplished using negative polarity of copper, copper-tungsten and graphite electrode. In this study, peak current, pulse-on time, pulse-off time and servo-voltage are taken into consideration as process variables. The surface roughness is greatly influenced by peak current and pulse-on time among the selected electrical parameters. Among the three electrodes, the copper electrode produces the lowest surface roughness whilst graphite electrode gives the highest surface roughness. The surface characteristics (crater, crack and globule) are distorted on account of discharge energy. In context of fine surface characteristics, the copper can become as first choice electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X, Chu PK, Din C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. doi:10.1016/j.mser.2004.11.001

    Google Scholar 

  2. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. doi:10.1016/S0921-5093(97)00808-3

    Google Scholar 

  3. Khan MAR, Rahman MM, Kadirgama K (2015) An experimental investigation on surface finish in die-sinking EDM of Ti-5Al-2.5Sn. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6507-y

    Google Scholar 

  4. Rahman MM, Khan MAR, Kadirgama K, Noor MM, Bakar RA (2010). Mathematical modeling of material removal rate for Ti-5Al-2.5Sn through EDM process: a surface response method. Advances in Control, Chemical Engineering, Civil Engineering and Mechanical Engineering 34–37

  5. Khan MAR, Rahman MM, Kadirgama K, Ismail AR (2012a) Mathematical model for wear rate of negative graphite electrode in electrical discharge machining on Ti-5A1-2.5Sn. Jurnal Teknologi 59:57–61

    Google Scholar 

  6. Lovatt R (2008) The development of a lightweight electric vehicle chassis and investigation into the suitability of tial for automotive applications. M.Sc. Thesis. The University of Waikato, Hamilton, New Zealand

  7. Khan MAR, Rahman MM, Kadirgama K, Maleque MA, Bakar RA (2011a) Artificial intelligence model to predict surface roughness of Ti-15-3 alloy in EDM process. World Academic Science Engineering Technology 74:121–125

    Google Scholar 

  8. Rahman MM, Khan MAR, Noor MM, Kadirgama K, Bakar RA (2011) Optimization of machining parameters on surface roughness in EDM of Ti-6Al-4V using response surface method. Advance Materials Research. doi:10.4028/www.scientific.net/AMR.213.402

    Google Scholar 

  9. Khan MAR, Rahman MM, Kadirgama K (2012b) Mathematical model and optimization of surface roughness during electrical discharge machining of Ti-5Al-2.5Sn with graphite electrode. Adv Sci Lett. doi:10.1166/asl.2012.4211

    Google Scholar 

  10. Khan MAR, Rahman MM, Kadirgama K, Bakar RA (2012c) Artificial neural network model for material removal rate of Ti-15-3 in electrical discharge machining. Energy Education Science and Technology Part A: Energy Science and Research 29(2):1025–1038

    Google Scholar 

  11. Maher I, Ling LH, Sarhan AAD, Hamdi M (2015) Improve wire EDM performance at different machining parameters—ANFIS modelling. IFAC-PapersOnLine 48(1):105–110

    Article  Google Scholar 

  12. Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. Journal of Materials Processing Technologies 87:107–111

    Article  Google Scholar 

  13. Hascalik A, Caydas U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci. doi:10.1016/j.apsusc.2007.05.031

    Google Scholar 

  14. Caydas U, Hascalik A (2008) Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology. International J Adv Manuf Technol. doi:10.1007/s00170-007-1162-1

    Google Scholar 

  15. Fonda P, Wang Z, Yamazaki K, Akutsu Y (2008) A fundamental study on Ti–6Al–4V’s thermal and electrical properties and their relation to EDM productivity. Journal of Materials Processing Technologies. doi:10.1016/j.jmatprotec.2007.09.060

    Google Scholar 

  16. Rao GKM, Janardhana GR, Rao DH, Rao MS (2008) Development of hybrid model and optimization of metal removal rate in electric discharge machining using artificial neural networks and genetic algorithm. ARPN Journal of Engineering and Applied Science 3(1):19–30

    Google Scholar 

  17. Rao GKM, Rangajanardhaa G, Rao DH, Rao MS (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. Journal of Materials Processing Technologies. doi:10.1016/j.jmatprotec.2008.04.003

    Google Scholar 

  18. Kao JY, Tsao CC, Wang SS, Hsu CY (2010) Optimization of the EDM parameters on machining Ti–6Al–4 V with multiple quality characteristics. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2208-3

    Google Scholar 

  19. Raghav G, Kadam BS, Kumar M (2013) Optimization of material removal rate in electric discharge machining using mild steel. International Journal of Emerging Science and Engineering 1(7):2319–6378

    Google Scholar 

  20. Pawade MM, Banwait SS (2013) A brief review of die sinking electrical discharging machining process towards automation. Am J Mech Eng. doi:10.12691/ajme-1-2-4

    Google Scholar 

  21. Khan MAR, Rahman MM (2013) Development of regression equation for surface finish and analysis of surface integrity in EDM. International Journal of Mechanical, Industrial Science and Engineering 7(3):105–110

    Google Scholar 

  22. Ahmad S, Lajis MA (2013) Electrical discharge machining (EDM) of inconel 718 by using copper electrode at higher peak current and pulse duration. IOP Conf Series : Materials Science and Engineering 50:1–7

    Google Scholar 

  23. Daneshmand S, Kahrizi EF, Abedi E, Abdolhosseini MM (2013) Influence of machining parameters on electro discharge machining of niti shape memory alloys. Int J Electrochem Sci 8:3095–3104

    Google Scholar 

  24. Gill AS, Kumar S (2016) Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Journal of Materials and Manufacturing Processes 31(4):514–521. doi:10.1080/10426914.2015.1070412

    Article  Google Scholar 

  25. Gopalakannan S, Senthilvelan T (2012) Effect of electrode materials on electric discharge machining of 316 L and 17-4 PH stainless steels. J Miner Mater Charact Eng 11:685–690

    Google Scholar 

  26. Hegab HA, Gadallah MH, Esawi AK (2015) Modeling and optimization of electrical discharge machining (EDM) using statistical design. Manuf Rev. doi:10.1051/mfreview/2015023

    Google Scholar 

  27. Kathiresan M, Sornakumar T (2010) EDM studies on aluminum alloy-silicon carbide composites developed by vortex technique and pressure die casting. Journal of Minerals & Materials Characterization & Engineering 9(1):79–88

    Article  Google Scholar 

  28. Reddy VV, Valli PM, Kumar A, Reddy CS (2015) Influence of process parameters on characteristics of electrical discharge machining of PH17-4 stainless steel. J Adv Manuf Syst. doi:10.1142/S0219686715500122

    Google Scholar 

  29. Singh B, Singh P, Tejpal G, Singh G (2012) An experimental study of surface roughness of h11 steel in EDM process using copper tool electrode. International Journal of Advanced Engineering Technology 3(4):130–133

    Google Scholar 

  30. Daneshmand S, Kahrizi EF, Neyestanak AAL, Monfared V (2014) Optimization of electrical discharge machining parameters for Niti shape memory alloy by using the Taguchi method. J Mar Sci Technol. doi:10.6119/JMST-013-0624-1

    Google Scholar 

  31. Gostimirovic M, Kovac P, Sekulic M, Skoric B (2012) Influence of discharge energy on machining characteristics in EDM. J Mech Sci Technol. doi:10.1007/s12206-011-0922-x

    Google Scholar 

  32. Kopeliovich D (2009) Titanium alpha and near alpha alloys. Substances and Technologies. http://www.substech.com/dokuwiki/doku.php?id=titanium_alpha_and_near-alpha_alloys. Accessed 28 Feb 2009

  33. Kopeliovich D (2008) Titanium alpha alloy, grade 6 (Ti-5Al-2.5Sn). Substances and Technologies. http://www.substech.com/dokuwiki/doku.php?id=titanium_alpha_alloy_grade_6_ti-5Al-2.5Sn. Accessed 16 May 2008

  34. Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol. doi:10.1016/j.jmatprotec.2008.09.015

    Google Scholar 

  35. Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29(4):367–371

    Article  Google Scholar 

  36. Mehta S, Rajurkar A, Chauhan J (2009) A review on current research trends in die-sinking electrical discharge machining of conductive ceramics. International Journal of Recent Trends in Engineering 1(5):100–104

    Google Scholar 

  37. Khan MAR, Rahman MM, Kadirgama K, Maleque MA, Ishak M (2011b) Prediction of surface roughness of Ti-6Al-4V in electrical discharge machining: a regression model. Journal of Mechanical Engineering and Science 1:16–24

    Article  Google Scholar 

  38. Jones FD, Ryffel HH, Oberg E, McCauley CJ, Heald RM (2004) Machinery's handbook, 27th edn. Industrial Press, New York, pp 629–745

    Google Scholar 

  39. Wu KL, Yan BH, Huang FY, Chen SC (2005) Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. International Journal of Machine Tools & Manufacture. doi:10.1016/j.ijmachtools.2004.12.005

    Google Scholar 

  40. Abu Zeid OA (1997) On the effect of electrodischarge machining parameters on the fatigue life of AISI D6 tool steel. Journal of Materials Processing Technologies 68:27–32

    Article  Google Scholar 

  41. Tsai KM, Wang PJ (2001) Semi-empirical model of surface finish on electrical discharge machining. International Journal of Machine Tools & Manufacture 41:1455–1477

    Article  Google Scholar 

  42. Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol. doi:10.1007/s00170-010-2534-5

    Google Scholar 

  43. Mahdavinejad RA (2009) EDM process optimisation via predicting a controller model. Archives of Computational Materials Science and Surface Engineering 1(3):161–167

    Google Scholar 

  44. Puertas I, Luis CJ (2003) A study on the machining parameters optimisation of electrical discharge machining. Journal of Materials Processing Technologies. doi:10.1016/S0924-0136(03)00392-3

    Google Scholar 

  45. Ramasawmy H, Blunt L, Rajurkar KP (2005) Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die-sinking EDM process. Precis Eng. doi:10.1016/j.precisioneng.2005.02.001

    Google Scholar 

  46. Soni JS, Chakraverti G (1995) Effect of electrode material properties on surface roughness and dimensional accuracy in electro-discharge machining of high carbon high chromium die steel. Journal of institution engineering (India) Part PR: Production Engineering Division 76:46–51

    Google Scholar 

  47. Pradhan MK, Biswas CK (2009) Modeling and analysis of process parameters on surface roughness in EDM of AISI D2 tool steel by RSM approach. International Journal of Engineering and Applied Sciences 5(5):346–351

    Google Scholar 

  48. Amorim FL, Weingaertner WL (2004) Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds. J Braz Soc Mech Sci Eng 26(2):137–144

    Article  Google Scholar 

  49. Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. Journal of Materials Processing Technologies 115:344–358

    Article  Google Scholar 

  50. Ramasawmy H, Blunt L (2004) Effect of EDM process parameters on 3D surface topography. Journal of Materials Processing Technologies. doi:10.1016/S0924-0136(03)00652-6

    Google Scholar 

  51. Lin YC, Lee HS (2008) Machining characteristics of magnetic force-assisted EDM. Int J Mach Tools Manuf. doi:10.1016/j.ijmachtools.2008.04.004

    Google Scholar 

  52. Kiyak M, Cakir O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Technol. doi:10.1016/j.jmatprotec.2007.03.008

    Google Scholar 

  53. Wu KL, Yan BH, Lee JW, Ding CG (2009) Study on the characteristics of electrical discharge machining using dielectric with surfactant. Journal of Materials Processing Technologies. doi:10.1016/j.jmatprotec.2008.09.005

    Google Scholar 

  54. Descoeudres, A. (2006). Characterization of electrical discharge machining plasmas. Ph.D. Thesis. Ecole Polytechnique Federale de Lausanne, Switzerland

  55. Lee HT, Tai TY (2003) Relationship between EDM parameters and surface crack formation. J Mater Process Technol. doi:10.1016/S0924-0136(03)00688-5

    Google Scholar 

  56. Bhattacharyya B, Gangopadhyay S, Sarkar BR (2007) Modelling and analysis of EDMED job surface integrity. J Mater Process Technol. doi:10.1016/j.jmatprotec.2007.01.018

    Google Scholar 

  57. Bonny K, Baets PD, Wittenberghe JV, Delgado YP, Vleugels J, Biest OV et al (2010) Influence of electrical discharge machining on sliding friction and wear of WC–Ni cemented carbide. Tribol Int. doi:10.1016/j.triboint.2010.08.008

    Google Scholar 

  58. Chiang KT (2008) Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic. Int J Adv Manuf Technol. doi:10.1007/s00170-007-1002-3

    Google Scholar 

  59. Yan BH, Lin YC, Huang FY, Wang CH (2001) Surface modification of SKD 61 during EDM with metal powder in the dielectric. Materials Transaction JIM 42(12):2597–2604

    Article  Google Scholar 

  60. Patel KM, Pandey PM, Rao PV (2009) Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al2O3/SiCw/TiC ceramic composite. Mater Manuf Process. doi:10.1080/10426910902769319

    Google Scholar 

  61. Senthilkumar V, Omprakash BU (2011) Effect of titanium carbide particle addition in the aluminium composite on EDM process parameters. Journal of Manufacturing Process. doi:10.1016/j.jmapro.2010.10.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ashikur Rahman Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.R., Rahman, M. Surface characteristics of Ti-5Al-2.5Sn in electrical discharge machining using negative polarity of electrode. Int J Adv Manuf Technol 92, 1–13 (2017). https://doi.org/10.1007/s00170-017-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0028-4

Keywords

Navigation