Skip to main content
Log in

A simplified method to calculate the rolling force in hot rolling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

It is well known that there are sharp peaks (friction hills) in the specific roll pressure curves predicted by Sims formula and Цeликoв formula which result in large errors for hot rolling. In this paper, a new specific roll pressure formula is derived from the Navier-Stokes equation (N-S equation) by the hydrodynamics method (HM) with assumptions that strip materials take the characteristics of viscous fluid during plastic deformation of hot rolling processes. Results predicted by this HM formula, Sims formula, and Цeликoв formula were compared with experimental data. It was found the friction hills in the specific roll pressure curves predicted by Sims formula and Цeликoв formula are smoothed by this newly established formula and higher accuracy can be achieved in the calculation of the unit width rolling force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Karman TV (1925) On the theory of rolling. Z Angew Math Mech 5:130–141

    Google Scholar 

  2. Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Eng 150(1):140–167. doi:10.1243/PIME_PROC_1943_150_025_02

    Article  Google Scholar 

  3. Sims RB (1954) The calculation of roll force and torque in hot rolling mills. Proc Inst Mech Eng 168(1):191–200. doi:10.1243/PIME_PROC_1954_168_023_02

    Article  Google Scholar 

  4. Qwamizadeh M, Kadkhodaei M, Salimi M (2014) Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. Int J Adv Manuf Technol 73(1–4):521–533. doi:10.1007/s00170-014-5825-4

    Article  Google Scholar 

  5. Lundberg SE, Överstam H (2007) Modeling of stress state, centre consolidation and roll force in billet rolling. Steel Res Int 78(6):492–501

    Article  Google Scholar 

  6. Oluwole OO, Olaogun O (2011) Slip line field solution for second pass in lubricated 4-high reversing cold rolling sheet mill. Engineering 3(12):1225–1233. doi:10.4236/eng.2011.312152

    Article  Google Scholar 

  7. Sun JL, Peng Y, Liu HM, Liu G (2012) Rolling theory analysis and forces calculation of heavy cylinder rolling mill with two drive rolls. Adv Mater Res 572:13–18

    Article  Google Scholar 

  8. Liu YM, Ma GS, Zhang DH, Zhao DW (2015) Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling. J Mater Process Technol 223:91–97. doi:10.1016/j.jmatprotec.2015.03.051

    Article  Google Scholar 

  9. Hua L, Deng J, Qian D, Ma Q (2015) Using upper bound solution to analyze force parameters of three-roll cross rolling of rings with small hole and deep groove. Int J Adv Manuf Technol 76(1–4):353–366. doi:10.1007/s00170-014-6107-x

    Article  Google Scholar 

  10. Liu YM, Zhang DH, Zhao DW, Sun J (2015) Analysis of vertical rolling using double parabolic model and stream function velocity field. Int J Adv Manuf Technol 82(5–8):1153–1161. doi:10.1007/s00170-015-7393-7

    Google Scholar 

  11. Bogatov AA, Nukhov DS, P’yankov KP (2015) Finite-element modeling of plate-rolling. Metallurgist 59(1–2):113–118. doi:10.1007/s11015-015-0069-6

    Article  Google Scholar 

  12. Lenard JG (2014) An advanced finite element model of the flat, cold rolling process. In: Lenard JG (ed) Primer on flat rolling, 2nd edn. Elsevier, Oxford, pp 113–123. doi:10.1016/B978-0-08-099418-5.00006-8

    Chapter  Google Scholar 

  13. Mei RB, Li CS, Cai B, Zhang G, Liu XH (2013) Prediction of initial velocity field for fast solution of rolling force by FEM in strip rolling. AIP Conf Proc 1532(1):574–580. doi:10.1063/1.4806878

    Article  Google Scholar 

  14. Ruan JH, Zhang LW, Wang ZG, Wang T, Li YR, Hao ZQ (2015) Finite element simulation based plate edging model for plan view pattern control during wide and heavy plate rolling. Ironmak Steelmak 42(8):585–593. doi:10.1179/1743281215Y.0000000002

    Article  Google Scholar 

  15. Hum B, Colquhoun HW, Lenard JG (1996) Measurements of friction during hot rolling of aluminum strips. J Mater Process Technol 60(1–4):331–338. doi:10.1016/0924-0136(96)02350-3

    Article  Google Scholar 

  16. Daniel WP, Alain E, Nicolas L (2011) A new sensor for the evaluation of contact stress by inverse analysis during steel strip rolling. J Mater Process Technol 211(9):1500–1509. doi:10.1016/j.jmatprotec.2011.03.025

    Article  Google Scholar 

  17. Daniel WP, Alain E, Nicolas L (2013) Evaluation of contact stress during rolling process, by three dimensional analytical inverse method. Int J Solids Struct 50(20–21):3319–3331. doi:10.1016/j.ijsolstr.2013.06.005

    Google Scholar 

  18. Wang Q, Jiang Z, Zhao J, Fang M (2013) Multi-factor coupling system characteristic of the dynamic roll gap in the high-speed rolling mill during the unsteady lubrication process. Tribol Int 67:174–181. doi:10.1016/j.triboint.2013.07.010

    Article  Google Scholar 

  19. Le HR, Sutcliffe MPF (2002) Rolling of thin strip and foil: application of a tribological model for “mixed” lubrication. J Tribol 124(1):129–136. doi:10.1115/1.1402179

    Article  Google Scholar 

  20. He YX (2010) Rolling engineering. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  21. Ding Z, Li B, Liang S (2015) Maraging steel phase transformation in high strain rate grinding. Int J Adv Manuf Technol 80(1–4):711–718. doi:10.1007/s00170-015-7014-5

    Article  Google Scholar 

  22. Saboori M, Champliaud H, Gholipour J, Gakwaya A, Savoie J, Wanjara P (2015) Extension of flow stress–strain curves of aerospace alloys after necking. Int J Adv Manuf Technol 83(1–4):313–323. doi:10.1007/s00170-015-7557-5

    Google Scholar 

  23. Yu J, Jiang F, Rong Y, Xie H, Suo T (2014) Numerical study the flow stress in the machining process. Int J Adv Manuf Technol 74(1–4):509–517. doi:10.1007/s00170-014-5966-5

    Article  Google Scholar 

  24. Anand L, Zavaliangos A, von Turkovich BF (1990) Hot working—constitutive equations and computational procedures. CIRP Ann Manuf Technol 39(1):235–238. doi:10.1016/s0007-8506(07)61043-9

    Article  Google Scholar 

  25. Ji S, Wang Y, Liu J, Meng X, Tao J, Zhang T (2015) Effects of welding parameters on material flow behavior during linear friction welding of Ti6Al4V titanium alloy by numerical investigation. Int J Adv Manuf Technol 82(5–8):927–938. doi:10.1007/s00170-015-7408-4

    Google Scholar 

  26. Rakhshkhorshid M (2014) Modeling the hot deformation flow curves of API X65 pipeline steel. Int J Adv Manuf Technol 77(1–4):203–210. doi:10.1007/s00170-014-6447-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Z., Liu, C. et al. A simplified method to calculate the rolling force in hot rolling. Int J Adv Manuf Technol 88, 2053–2059 (2017). https://doi.org/10.1007/s00170-016-8890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8890-z

Keywords

Navigation