Skip to main content

Advertisement

Log in

A QFD-based approach to support sustainable product-service systems conceptual design

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During the design process of product-service systems (PSS) particular attention must be placed on sustainability, since the current models do not completely support the generation of sustainable PSS solutions. New methods to investigate PSS requirements analysis, evaluation, and conceptual design stages according to sustainability principles are needed. In this paper, an approach based on quality function deployment (QFD) is proposed to support PSS design. QFD is applied to translate stakeholders’ requirements in the three sustainability dimensions into engineering metrics of products and services. QFD is also applied to deploy PSS functions and to support the conceptual development. Fuzzy analytic hierarchy process (FAHP) is used to prioritize the stakeholders’ requirements in the three sustainability dimensions, and the fuzzy set theory is considered to reduce the vagueness and uncertainty during the process. The proposed approach is applied in an illustrative case for the conceptual design of a bike-sharing system. The suggested approach aims to contribute to the theory development as well as for practitioners. Firstly, it allows integrating the sustainability principles since the requirements elicitation stage, considering all stakeholders involved in the offer. Secondly, the requirements evaluation considering FAHP allows prioritizing the sustainability requirements dealing with uncertainty and vagueness. Finally, it helps to obtain more realistic results by integrating fuzzy decision-making into QFD. In future research, the integration of the Theory of Inventive Problem Solving (TRIZ) in the proposed approach will be investigated as well as the evaluation of different PSS concepts according to their sustainability potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shehab E, Roy R (2010) Guest editorial: IJAMT special issue on: product-service systems. Int J Adv Manuf Technol 52(9):1115–1116. doi:10.1007/s00170-010-2995-6

    Google Scholar 

  2. Beuren FH, Gomes Ferreira MG, Cauchick Miguel PA (2013) Product-service systems: a literature review on integrated products and services. J Clean Prod 47:222–231. doi:10.1016/j.jclepro.2012.12.028

    Article  Google Scholar 

  3. Doualle B, Medini K, Boucher X, Laforest V (2015) Investigating sustainability assessment methods of product–service systems. Procedia CIRP 30:161–166. doi:10.1016/j.procir.2015.03.008

    Article  Google Scholar 

  4. Van Ostaeyen J, Van Horenbeek A, Pintelon L, Duflou JR (2013) A refined typology of product–service systems based on functional hierarchy modeling. J Clean Prod 51:261–276. doi:10.1016/j.jclepro.2013.01.036

    Article  Google Scholar 

  5. Salazar C, Lelah A, Brissaud D (2015) Eco-designing product service systems by degrading functions while maintaining user satisfaction. J Clean Prod 87:452–462. doi:10.1016/j.jclepro.2014.09.031

    Article  Google Scholar 

  6. Piscicelli L, Cooper T, Fisher T (2015) The role of values in collaborative consumption: insights from a product–service system for lending and borrowing in the UK. J Clean Prod 97:21–29. doi:10.1016/j.jclepro.2014.07.032

    Article  Google Scholar 

  7. Peruzzini M, Marilungo E, Germani M (2015) Structured requirements elicitation for product-service system. Int J Agil Syst Manag 8(3–4):189–218. doi:10.1504/IJASM.2015.073516

    Article  Google Scholar 

  8. Durugbo C (2013) Integrated product-service analysis using SysML requirement diagrams. Syst Eng 16(1):111–123. doi:10.1002/sys.21229

    Article  Google Scholar 

  9. Zhu H, Gao J, Cai Q (2015) A product-service system using requirement analysis and knowledge management technologies. Kybernetes 44(5):823–842. doi:10.1108/K-11-2014-0244

    Article  Google Scholar 

  10. Sutanto A, Yuliandra B, Tjahjono B, Hadiguna RA (2015) Product-service system design concept development based on product and service integration. J Des Eng Res 13(1):1–19. doi:10.1504/JDR.2015.067224

    Google Scholar 

  11. Li H, Ji Y, Gu X, Qi G, Tang R (2012) Module partition process model and method of integrated service product. Comput Ind 63(4):298–308. doi:10.1016/j.compind.2012.02.015

    Article  Google Scholar 

  12. Geng X, Chu X, Xue D, Zhang Z (2010) An integrated approach for rating engineering characteristics’ final importance in product-service system development. Comput Ind Eng 59(4):585–594. doi:10.1016/j.cie.2010.07.002

    Article  Google Scholar 

  13. Chen DP, Chu XN, Yang XY, Sun XW, Li YP, Su YL (2015) PSS solution evaluation considering sustainability under hybrid uncertain environments. Expert Syst Appl 42(14):5822–5838. doi:10.1016/j.eswa.2015.04.003

    Article  Google Scholar 

  14. Cavalieri S, Pezzotta G (2012) Product-service systems engineering: state of the art and research challenges. Comput Ind 63(4):278–288. doi:10.1016/j.compind.2012.02.006

    Article  Google Scholar 

  15. Vasantha GVA, Roy R, Lelah A, Brissaud D (2012) A review of product-service systems design methodologies. J Eng Des 23(9):635–659. doi:10.1080/09544828.2011.639712

    Article  Google Scholar 

  16. Song W, Ming X, Han Y, Wu Z (2013) A rough set approach for evaluating vague customer requirement of industrial product-service system. Int J Prod Res 51(22):6681–6701. doi:10.1080/00207543.2013.832435

    Article  Google Scholar 

  17. Vasantha GVA, Roy R, Corney JR (2015) Advances in designing product-service systems. J Indian Inst Sci 95(4):429–447

    Google Scholar 

  18. Rexfelt O, Hiort Af Ornäs V (2009) Consumer acceptance of product-service systems: designing for relative advantages and uncertainty reductions. J Manuf Technol Manag 20(5):674–699. doi:10.1108/17410380910961055

    Article  Google Scholar 

  19. Buyukozkan G, Cifci G (2013) An integrated QFD framework with multiple formatted and incomplete preferences: a sustainable supply chain application. Appl Soft Comput J 13(9):3931–3941. doi:10.1016/j.asoc.2013.03.014

    Article  Google Scholar 

  20. Kim S, Yoon B (2012) Developing a process of concept generation for new product-service systems: a QFD and TRIZ-based approach. Serv Bus 6(3):323–348. doi:10.1007/s11628-012-0138-x

    Article  Google Scholar 

  21. Raggi A, Petti L (2006) A newly developed integrated environment-quality approach for the design of hotel services. Prog Ind Ecol 3(3):251–271

    Article  Google Scholar 

  22. Cordeiro EC, Barbosa GF, Trabasso LG (2016) A customized QFD (quality function deployment) applied to management of automation projects. Int J Adv Manuf Technol 1–10. In press. doi:10.1007/s00170-016-8626-0

  23. Sakao T, Shimomura Y (2007) Service engineering: a novel engineering discipline for producers to increase value combining service and product. J Clean Prod 15(6):590–604

    Article  Google Scholar 

  24. Büyüközkan G, Berkol Ç (2011) Designing a sustainable supply chain using an integrated analytic network process and goal programming approach in quality function deployment. Expert Syst Appl 38(11):13731–13748. doi:10.1016/j.eswa.2011.04.171

    Google Scholar 

  25. Bereketli I, Erol Genevois M (2013) An integrated QFDE approach for identifying improvement strategies in sustainable product development. J Clean Prod 54:188–198. doi:10.1016/j.jclepro.2013.03.053

    Article  Google Scholar 

  26. Vezzoli C, Ceschin F, Diehl JC, Kohtala C (2015) New design challenges to widely implement “sustainable product-service systems”. J Clean Prod 97:1–12. doi:10.1016/j.jclepro.2015.02.061

    Article  Google Scholar 

  27. Overholm H (2015) Alliance formation by intermediary ventures in the solar service industry: implications for product-service systems research. J Clean Prod. doi:10.1016/j.jclepro.2015.07.061

    Google Scholar 

  28. Manzini E, Vezzoli C (2003) A strategic design approach to develop sustainable product service systems: examples taken from the “environmentally friendly innovation” Italian prize. J Clean Prod 11(8):851–857. doi:10.1016/S0959-6526(02)00153-1

    Article  Google Scholar 

  29. Tran T, Park JY (2016) Development of a novel set of criteria to select methodology for designing product service systems. J Comput Des Eng 3(2):112–120. doi:10.1016/j.jcde.2015.10.001

    Google Scholar 

  30. Peruzzini M, Germani M (2014) Design for sustainability of product-service systems. Int J Agil Syst Manag 7(3–4):206–219. doi:10.1504/IJASM.2014.065355

    Article  Google Scholar 

  31. Berkovich M, Leimeister JM, Hoffmann A, Krcmar H (2014) A requirements data model for product service systems. Requir Eng 19(2):161–186. doi:10.1007/s00766-012-0164-1

    Article  Google Scholar 

  32. Berkovich M, Leimeister JM, Krcmar H (2011) Requirements engineering for product service systems: a state of the art analysis. Bus Inf Syst Eng 3(6):369–380. doi:10.1007/s12599-011-0192-2

    Article  Google Scholar 

  33. Lee S, Geum Y, Lee H, Park Y (2012) Dynamic and multidimensional measurement of product-service system (PSS) sustainability: a triple bottom line (TBL)-based system dynamics approach. J Clean Prod 32:173–182. doi:10.1016/j.jclepro.2012.03.032

    Article  Google Scholar 

  34. Zhang Z, Chu X (2010) A new approach for conceptual design of product and maintenance. Int J Comp Integr Manuf 23(7):603–618. doi:10.1080/09511921003736766

    Article  Google Scholar 

  35. Shimomura Y, Nemoto Y, Kimita K (2015) A method for analysing conceptual design process of product-service systems. CIRP Ann Manuf Technol 64(1):145–148. doi:10.1016/j.cirp.2015.04.035

    Article  Google Scholar 

  36. Nemoto Y, Akasaka F, Shimomura Y (2015) A framework for managing and utilizing product-service system design knowledge. Prod Plan Control 26(14–15):1278–1289. doi:10.1080/09537287.2015.1033493

    Article  Google Scholar 

  37. Hussain R, Lockett H, Annamalai Vasantha GV (2012) A framework to inform PSS conceptual design by using system-in-use data. Comput Ind 63(4):319–327. doi:10.1016/j.compind.2012.02.013

    Article  Google Scholar 

  38. Bertoni A, Bertoni M, Isaksson O (2013) Value visualization in product service systems preliminary design. J Clean Prod 53:103–117. doi:10.1016/j.jclepro.2013.04.012

    Article  Google Scholar 

  39. Montelisciani G, Gabelloni D, Fantoni G (2015) Developing integrated sustainable product-process-service systems at the early product design stages. Int J Sustain Manuf 3(4):310–332. doi:10.1504/IJSM.2015.073819

    Article  Google Scholar 

  40. Geng X, Chu X (2012) A new importance-performance analysis approach for customer satisfaction evaluation supporting PSS design. Expert Syst Appl 39(1):1492–1502. doi:10.1016/j.eswa.2011.08.038

    Article  Google Scholar 

  41. Halog A, Schultmann F, Rentz O (2001) Using quality function deployment for technique selection for optimum environmental performance improvement. J Clean Prod 9(5):387–394. doi:10.1016/S0959-6526(00)00080-9

    Article  Google Scholar 

  42. Devanathan S, Ramanujan D, Bernstein WZ, Zhao F, Ramani K (2010) Integration of sustainability into early design through the function impact matrix. J Mech Des Trans ASME 132(8):0810041–0810048. doi:10.1115/1.4001890

    Google Scholar 

  43. Sakao T, Birkhofer H, Panshef V, Dorsam E (2009) An effective and efficient method to design services: empirical study for services by an investment-machine manufacturer. Int J Internet Manuf Serv 2(1):95–110. doi:10.1504/IJIMS.2009.031342

    Google Scholar 

  44. Rovida E, Bertoni M, Carulli M (2009) About the use of TRIZ for product-service development. Paper presented at the International Conference on Engineering Design ICED’09, California, 24–27 August

  45. Shimomura Y, Hara T, Arai T (2009) A unified representation scheme for effective PSS development. CIRP Ann Manuf Technol 58(1):379–382. doi:10.1016/j.cirp.2009.03.025

    Article  Google Scholar 

  46. Zadeh LA (1965) Fuzzy sets. Infect Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X

    MathSciNet  MATH  Google Scholar 

  47. Bovea MD, Wang B (2003) Identifying environmental improvement options by combining life cycle assessment and fuzzy set theory. Int J Prod Res 41(3):593–609. doi:10.1080/0020754021000033878

    Article  MATH  Google Scholar 

  48. Ceschin F (2014) Sustainable product-service systems between strategic design and transition studies. Springer. doi:10.1007/978-3-319-03795-0

    Google Scholar 

  49. Crul M, Diehl JC, Ryan C (2009) Design for sustainability e a step by step approach. Paris

  50. Saaty T (1980) The analytical hierarchy process. McGraw Hill, New York

    MATH  Google Scholar 

  51. Javanbarg MB, Scawthorn C, Kiyono J, Shahbodaghkhan B (2012) Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Syst Appl 39(1):960–966. doi:10.1016/j.eswa.2011.07.095

    Article  Google Scholar 

  52. Chang D-Y (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655. doi:10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

  53. van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst 11(1):229–241. doi:10.1016/S0165-0114(83)80082-7

    Article  MathSciNet  MATH  Google Scholar 

  54. Kuo TC, Wu HH, Shieh JI (2009) Integration of environmental considerations in quality function deployment by using fuzzy logic. Expert Syst Appl 36(3 PART 2):7148–7156. doi:10.1016/j.eswa.2008.08.029

    Article  Google Scholar 

  55. Wang Y-M, Luo Y, Hua Z (2008) On the extent analysis method for fuzzy AHP and its applications. Eur J Oper Res 186(2):735–747. doi:10.1016/j.ejor.2007.01.050

    Article  MATH  Google Scholar 

  56. Vinodh S, Rathod G (2012) Application of fuzzy logic-based environmental conscious QFD to rotary switch: a case study. Clean Technol Environ Policy 14(2):319–332. doi:10.1007/s10098-011-0404-y

    Article  Google Scholar 

  57. Chai K-H, Zhang J, Tan K-C (2005) A TRIZ-based method for new service design. J Serv Res 8(1):48–66. doi:10.1177/1094670505276683

    Article  Google Scholar 

  58. Fishman E, Washington S, Haworth N (2014) Bike share’s impact on car use: evidence from the United States, Great Britain, and Australia. Transp Res Part D Transp Environ 31:13–20. doi:10.1016/j.trd.2014.05.013

    Article  Google Scholar 

  59. Fishman E, Washington S, Haworth N, Watson A (2014) Factors influencing bike share membership: an analysis of Melbourne and Brisbane. Transp Res Part A Policy Pract 71:17–30. doi:10.1016/j.tra.2014.10.021

    Article  Google Scholar 

  60. Tukker A (2004) Eight types of product-service system: eight ways to sustainability? Experiences from suspronet. Bus Strateg Environ 13(4):246–260. doi:10.1002/bse.414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thayla T. Sousa-Zomer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa-Zomer, T.T., Miguel, P.A.C. A QFD-based approach to support sustainable product-service systems conceptual design. Int J Adv Manuf Technol 88, 701–717 (2017). https://doi.org/10.1007/s00170-016-8809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8809-8

Keywords

Navigation