Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

  • Ratnesh Kumar
  • Somnath Chattopadhyaya
  • Amit Rai Dixit
  • Bhabani Bora
  • Michal Zelenak
  • Josef Foldyna
  • Sergej Hloch
  • Petr Hlavacek
  • Jiri Scucka
  • Jiri Klich
  • Libor Sitek
  • Pedro Vilaca
ORIGINAL ARTICLE

DOI: 10.1007/s00170-016-8776-0

Cite this article as:
Kumar, R., Chattopadhyaya, S., Dixit, A.R. et al. Int J Adv Manuf Technol (2016). doi:10.1007/s00170-016-8776-0

Abstract

Nowadays, the abrasive water jet (AWJ) technology is much in use for cutting materials into complex shapes with high dimensional accuracy. The objective of the present paper is to study the topography as well as the roughness of the surfaces in friction stir welded (FSW) joints, machined by AWJ. It discusses machinability of the FSW joints by AWJ. Subsequently, this paper makes a critical analysis of the surface properties by optical profilometer. Top and bottom surfaces, created by FSW, have also been analyzed using an optical 3D measurement system to determine the morphology and topographic parameters. FSW possesses favourable joining properties and generates a minimum heat-affected zone (HAZ) because of its comparatively low temperature coalescence. Three friction stir welding samples were prepared at 500, 710 and 1000 rpm with a welding speed of 40 mm/min on AA 6101-T6. After analysis, it was found that the sample prepared at 500 rpm and with welding speed of 40 mm/min produces a surface fit for industrial applications in terms of surface roughness and dimensional accuracy. It has also been observed that unlike other conventional or non-conventional processes, no HAZ is generated during the cutting of FSW joints by using the AWJ technology.

Keywords

Friction stir welding (FSW)Abrasive water jet (AWJ)Optical profilometerTopographySurface roughness

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Ratnesh Kumar
    • 1
  • Somnath Chattopadhyaya
    • 1
  • Amit Rai Dixit
    • 1
  • Bhabani Bora
    • 1
  • Michal Zelenak
    • 2
  • Josef Foldyna
    • 2
  • Sergej Hloch
    • 3
    • 4
  • Petr Hlavacek
    • 2
  • Jiri Scucka
    • 5
  • Jiri Klich
    • 2
  • Libor Sitek
    • 2
  • Pedro Vilaca
    • 6
  1. 1.Department of Mechanical EngineeringIndian School of MinesDhanbadIndia
  2. 2.Department of Material DisintegrationInstitute of Geonics of the CAS, v.v.i.OstravaThe Czech Republic
  3. 3.Faculty of Manufacturing Technologies TUKE with a seat in PrešovPlzeňská 1,Slovakia
  4. 4.Institute of Geonics of the CASv.v.i., OstravaThe Czech Republic
  5. 5.Department of Laboratory Research on GeomaterialsInstitute of Geonics of the CASv.v.i., OstravaThe Czech Republic
  6. 6.Department of Mechanical EngineeringAALTO UniversityEspooFinland