Skip to main content
Log in

Diamond tool wear in ultra-precision machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Diamond has many outstanding properties, such as high hardness, great toughness, high capability up to a nanometric tool cutting edge, high thermal conductivity, low friction, and high wear resistance. Accordingly, it is employed as an efficient tool in ultra-precision machining (UPM). However, diamond tool wear (DTW) in UPM is an inevitable physical phenomenon and even a little DTW will produce a direct impact on nanometric surface roughness. With a focus on diamond’s physical characteristics, this paper looks at the current investigations of DTW and posits an improved understanding of DTW in UPM. Firstly, the differences in DTW caused by different workpiece materials are reviewed, as are the factors influencing DTW and its effects. Secondly, the DTW mechanisms are summarized, including DTW anisotropy, DTW features, and DTW behaviors, with diamond tool performances. Thirdly, DTW measuring, DTW monitoring, DTW controlling, and DTW modeling are introduced. Thirdly, different methods for DTW suppression are surveyed with a view to improving the cutting performance of diamond tools. Finally, the challenges and opportunities for DTW, which may be of particular interest for future studies, are discussed with several conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikawa N, Donaldson RR, Komanduri R, König W, Aachen TH, McKeown PA, Moriwaki T, Stowers IF (1991) Ultra-precision metal cutting—the past, the present and the future. CIRP Ann Manuf Technol 40:587–594

    Article  Google Scholar 

  2. Cheng K, Huo D (eds) (2013) Micro cutting: fundamentals and applications. Wiley, Chichester

    Google Scholar 

  3. Goel S, Luo XC, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tools Manuf 88:131–164

    Article  Google Scholar 

  4. Zhang SJ, To S, Zhang GQ, Zhu ZW (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining. Int J Mach Tools Manuf 91:34–42

    Article  Google Scholar 

  5. Ali E, Christophe D (2001) Tribology of diamond, diamond-like carbon and related films. In: Bhushan B (ed) Modern tribology handbook. CRC Press, USA

    Google Scholar 

  6. Zhang SJ, To S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95

    Article  Google Scholar 

  7. Brinksmeier E, Preuß W (2012) Micro-machining. Phil Trans R Soc A 370:3973–3992

    Article  Google Scholar 

  8. Kong LB, Cheung CF (2012) Modeling and characterization of surface generation in fast tool servo machining of microlens arrays. Comput Ind Eng 63:957–970

    Article  Google Scholar 

  9. Casey M, Wilks J (1976) Some experiments to study turning tools using the scanning electron microscope. Int J Mach Tool Des Res 16:13–22

    Article  Google Scholar 

  10. Yamaguchi T, Higuchi M, Shimada S, Tanaka H, Obata K (2006) Scientific screening of raw diamond for an ultraprecision cutting tool with high durability. CIRP Ann Manuf Technol 55:71–74

    Article  Google Scholar 

  11. Hurt HH, Decker DL (1986) Tribological considerations of the diamond single-point tool. Proc SPIE Prod Asp Single Point Machined Optics 508:126–131

    Google Scholar 

  12. Yuan ZJ, He JC, Yao YX (1992) The optimum crystal plane of natural diamond tool for precision machining. CIRP Ann Manuf Technol 41:605–608

    Article  Google Scholar 

  13. Oomen JM, Eisses J (1992) Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis Eng 14:206–218

    Article  Google Scholar 

  14. B.M. Lane, (2010) Development of predictive models for abrasive and chemical wear of diamond tools, Msc. These, North Carolina State University.

  15. Crompton D, Hirst W, Howse MGW (1973) The wear of diamond. Proc R Soc London Ser A 333:435–454

    Article  Google Scholar 

  16. Pramanik A, Neo KS, Rahman M, Li XP, Sawa M, Maeda Y (2003) Cutting performance of diamond tools during ultra-precision turning of electroless-nickel plated die materials. J Mater Process Technol 140:308–313

    Article  Google Scholar 

  17. Yamaguchi T, Higuchi M, Shimada S, Kaneeda T (2007) Tool life monitoring during the diamond turning of electroless Ni-P. Precis Eng 31:196–201

    Article  Google Scholar 

  18. Gubbels GPH, van der Beek GJFT, Hoep AL, Delbressine FLM, van Halewijn H (2004) Diamond tool wear when cutting amorphous polymers. CIRP Ann Manuf Technol 53:447–450

    Article  Google Scholar 

  19. Rhorer RL, Evans CJ (2010) Fabrication of optics by diamond turning, in: Handbook of optics. McGraw Hill, USA

    Google Scholar 

  20. Fang FZ, Liu XD, Lee LC (2003) Micro-machining of optical glasses—a review of diamond-cutting glasses. Sadhana 28:945–955

    Article  Google Scholar 

  21. Jia P, Zhou M (2012) Tool wear and its effect on surface roughness in diamond cutting of glass soda-lime. Chin J Mech Eng 25:1224–1230

    Article  Google Scholar 

  22. Yan J, Syoji K, Tamaki J (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255:1380–1387

    Article  Google Scholar 

  23. Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262:340–349

    Article  Google Scholar 

  24. Goel S, Luo X, Comley P, Reuben RL, Cox A (2013) Brittle-ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf 65:15–21

    Article  Google Scholar 

  25. Yan J, Zhang Z, Kuriyagawa T (2009) Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tools Manuf 49:366–374

    Article  Google Scholar 

  26. Thornton AG, Wilks J (1978) Clean surface reactions between diamond and steel. Nature 274:792–793

    Article  Google Scholar 

  27. Zareena AR, Veldhuis SC (2012) Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J Mater Process Technol 212:560–570

    Article  Google Scholar 

  28. Abou-El-Hossein K, Olufayo O, Mkoko Z (2013) Performance of diamond inserts in ultra-high precision turning of Cu-Cr-Zr alloy. Wear 302:1098–1104

    Article  Google Scholar 

  29. Born DK, Goodman WA (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25:247–257

    Article  Google Scholar 

  30. Abou-El-Hossein K, Olufayo O, Mkoko Z (2013) Diamond tool wear during ultra-high precision machining of rapidly solidified aluminium RSA 905. Wear 302:1105–1112

    Article  Google Scholar 

  31. Yan J, Zhang Z, Kuriyagawa T (2010) Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann Manuf Technol 59:109–112

    Article  Google Scholar 

  32. Zhou M, Zhang HJ, Huang SN, Chen SJ, Cheng K (2011) Experimental study on the effects of feed rate and tool geometries on tool wear in diamond cutting of sinusoidal microstructured surfaces. J Eng Manuf 225:172–183

    Google Scholar 

  33. Yan J, Zhang Z, Kuriyagawa T (2011) Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Int J Autom Technol 5:307–312

    Article  Google Scholar 

  34. Zhang YL, Zhou ZM, Lv Y, Wang JL, Shao L, Iqbal A (2013) Wear behavior of natural diamond tool in cutting tungsten-based alloy. Int J Adv Manuf Technol 69:329–335

    Article  Google Scholar 

  35. Zhang GQ, To S, Xiao GB (2014) The relation between chip morphology and tool wear in ultra-precision raster milling. Int J Mach Tools Manuf 80–81:11–17

    Article  Google Scholar 

  36. Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tools Manuf 46:1778–1785

    Article  Google Scholar 

  37. Song YC, Nezu K, Park CH, Moriwaki T (2009) Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method. Int J Mach Tools Manuf 49:339–343

    Article  Google Scholar 

  38. Zhou M, Ngoi BKA (2001) Effect of tool wear and tool setting on profile accuracy of diamond-turned nonferrous components. Mater Manuf Process 16:79–89

    Article  Google Scholar 

  39. Wang Y, Suzuki N, Shamoto E, Zhao Q (2011) Investigation of tool wear suppression in ultraprecision diamond machining of die steel. Precis Eng 35:677–685

    Article  Google Scholar 

  40. Ge Y, Xu J, Yang H (2010) Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear 269:699–708

    Article  Google Scholar 

  41. Field JE (2012) The mechanical and strength properties of diamond. Rep Prog Phys 75:126505, 35pp

    Article  Google Scholar 

  42. Wong CJ (1981) Fracture and wear of diamond cutting tools. J Eng Mater Technol 103:341–345

    Article  Google Scholar 

  43. Ikawa N, Shimada S, Tsuwa H (1985) Non-destructive strength evaluation of diamond for ultra-precision cutting tool. CIRP Ann Manuf Technol 34:117–120

    Article  Google Scholar 

  44. Tanaka H, Shimada S, Higuchi M, Yamaguchi T, Kaneeda T, Obata K (2005) Mechanism of cutting edge chipping and its suppression in diamond turning of copper. CIRP Ann Manuf Technol 54:51–54

    Article  Google Scholar 

  45. Pastewka L, Moser S, Gumbsch P, Moseler M (2011) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10:34–38

    Article  Google Scholar 

  46. Wilks EM, Wilks J (1972) The resistance of diamond to abrasion. J Phys D Appl Phys 5:1902–1919

    Article  Google Scholar 

  47. Wilks EM, Wilks J (1991) The properties and applications of diamond. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  48. Zong WJ, Li ZQ, Sun T, Li D, Cheng K (2010) Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. J Mater Process Technol 210:858–867

    Article  Google Scholar 

  49. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18:4–19

    Article  Google Scholar 

  50. Siddhpura A, Paurobally R (2013) A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol 65:371–393

    Article  Google Scholar 

  51. Kendall K (1994) Adhesion: molecules and mechanics. Science 263:1720–1725

    Article  Google Scholar 

  52. Hung NP, Tan TC, Zhong ZW, Yeow GW (1999) Ductile-regime machining of particle-reinforced metal matrix composites. Mach Sci Technol 3:255–271

    Article  Google Scholar 

  53. Choi I-H, Kim J-D (1999) Development of monitoring system on the diamond tool wear. Int J Mach Tools Manuf 39:505–515

    Article  Google Scholar 

  54. Zong WJ, Sun T, Li D, Cheng K, Liang YC (2008) XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manuf 48:1678–1687

    Article  Google Scholar 

  55. Goel S, Luo X, Reuben RL (2011) Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput Mater Sci 51:402–408

    Article  Google Scholar 

  56. Komanduri R, Shaw MC (1975) Wear of synthetic diamond when grinding ferrous metals. Nature 255:211–213

    Article  Google Scholar 

  57. Miyoshi K, Buckley DH (1980) Adhesion and friction of single-crystal diamond in contact with transition metals. Appl Surf Sci 6:161–172

    Article  Google Scholar 

  58. Feng Z, Tzeng T, Field JE (1992) Friction of diamond on diamond in ultra-high vacuum and low-pressure environments. J Phys D Appl Phys 25:1418–1424

    Article  Google Scholar 

  59. Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2:233–236

    Article  Google Scholar 

  60. Berman R (1979) Thermal properties of diamond. In: Field JE (ed) The properties of diamond. Academic publ, London, pp 3–22

    Google Scholar 

  61. Shimada S, Inamura T, Higuchi M (2000) Suppression of tool wear in diamond turning of copper under reduced oxygen atmosphere. CIRP Ann Manuf Technol 49:21–24

    Article  Google Scholar 

  62. Pauling L (1949) A resonating-valence-bond theory of metals and intermetallic compounds. Proc R Soc A 196:343–362

    Article  MATH  Google Scholar 

  63. Lane BM, Dow TA, Scattergood R (2013) Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel. Wear 300:216–224

    Article  Google Scholar 

  64. R. Narulkar, (2009) Investigation on the mechanism of wear of single crystal diamond tool in nanometric cutting of iron using molecular dynamics (MD) and the development of generalized potential energy surfaces (GPES) based on ab initio calculations, Dissertation, Oklahoma State University.

  65. P. Cristian, (2004) Kinetics of diamond–silicon reaction under high pressure–high temperature conditions, Ph.D. Dissertation, Texas Christian University.

  66. Taylor JS, Syn CK, Saito TT, Donaldson RR (1986) Surface finish measurements of diamond-turned electroless-nickel-plated mirrors. Opt Eng 25:1013–1020

    Article  Google Scholar 

  67. Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Materials: ultrahard polycrystalline diamond from graphite. Nature 421:599–600

    Article  Google Scholar 

  68. Gogotsi YG, Kailer A, Nickel KG (1999) Materials: transformation of diamond to graphite. Nature 401:663–664

    Article  Google Scholar 

  69. Hird JR, Field JE (2005) A wear mechanism map for the diamond polishing process. Wear 258:18–25

    Article  Google Scholar 

  70. Chacham H, Kleinman L (2000) Instabilities in diamond under high shear stress. Phys Rev Lett 85:4904–4907

    Article  Google Scholar 

  71. Uemura M (2004) An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds. Tribol Int 37:887–892

    Article  Google Scholar 

  72. Comelli G, Stöhr J, Robinson CJ, Jark W (1988) Structural studies of argon-sputtered amorphous carbon films by means of extended x-ray-absorption fine structure. Phys Rev B 38:7511–7519

    Article  Google Scholar 

  73. Brinksmeier E, Gläbe R (2001) Advances in precision machining of steel. CIRP Ann Manuf Technol 50:385–388

    Article  Google Scholar 

  74. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48:947–964

    Article  Google Scholar 

  75. Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann Manuf Technol 53:57–60

    Article  Google Scholar 

  76. Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann Manuf Technol 40:559–562

    Article  Google Scholar 

  77. Inada A, Min S, Ohmori H (2011) Micro cutting of ferrous materials using diamond tool under ionized coolant with carbon particles. CIRP Ann Manuf Technol 60:97–100

    Article  Google Scholar 

  78. Cheng K, Luo X, Ward R, Holt R (2003) Modeling and simulation of the tool wear in nanometric cutting. Wear 255:1427–1432

    Article  Google Scholar 

  79. Furushiro N, Tanaka H, Higuchi M, Yamaguchi T, Shimada S (2010) Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits. CIRP Ann Manuf Technol 59:105–108

    Article  Google Scholar 

  80. Zong WJ, Li D, Sun T, Cheng K, Liang YC (2007) The ultimate sharpness of single-crystal diamond cutting tools—part II: a novel efficient lapping process. Int J Mach Tools Manuf 47:864–871

    Article  Google Scholar 

  81. Bell JG, Stuivinga MEC, Thornton AG, Wilks J (1977) Cracking and fatigue of diamond. J Phys D Appl Phys 10:1379–1387

    Article  Google Scholar 

  82. J. Zhang, (2014) Micro/Nano machining of steel and tungsten carbide utilizing elliptical vibration cutting technology, Ph.D. thesis, Nagoya University.

  83. G.P.H. Gubbels, (2006) Diamond turning of glassy polymers, Dissertation Abstracts International 68(no. 02).

  84. Brezoczky B, Seki H (1990) Triboattraction: friction under negative load. Langmuir 6(6):1141–1148

    Article  Google Scholar 

  85. Malz R, Brinksmeier E, Preuß W, Kohlscheen J, Stock HR, Mayr P (2000) Investigation of the diamond machinability of newly developed hard coatings. Precis Eng 24:146–152

    Article  Google Scholar 

  86. Hartung PD, Kramer BM, Von Turkovich BF (1982) Tool wear in titanium machining. CIRP Ann Manuf Technol 31:75–80

    Article  Google Scholar 

  87. Zong WJ, Li ZQ, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tools Manuf 50:411–419

    Article  Google Scholar 

  88. Asai S, Taguchi Y, Horio K, Kasai T, Kobayashi A (1990) Measuring the very small cutting edge for a diamond tool using a new kind of SEM having two detectors. CIRP Ann Manuf Technol 39:85–88

    Article  Google Scholar 

  89. Drescher JD, Dow TA (1990) Tool force model development for diamond turning. Precis Eng 12:29–35

    Article  Google Scholar 

  90. Feng Z, Field JE (1992) The friction and wear of diamond sliding on diamond. J Phys D25:33–37

    Google Scholar 

  91. van Bouwelen FM, Field JE, Brown LM (2003) Electron microscopy analysis of debris produced during diamond polishing. Philos Mag 83:839–856

    Article  Google Scholar 

  92. Couto MS, van Enckevort WJP, Seal M (1994) Diamond polishing mechanisms: an investigation by scanning tunneling microscopy. Philos Mag B 69:621–641

    Article  Google Scholar 

  93. Couto MS, van Enckvort WJP, Seal M (1994) On the mechanism of diamond polishing in the soft directions. J Hard Mater 5:31–47

    Google Scholar 

  94. Chon KS, Takahashi H, Namba Y (2014) Wear inspection of a single-crystal diamond tool used in electroless nickel turning. Opt Eng 53:03412

    Article  Google Scholar 

  95. Zhu K, Wong YS, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49:537–553

    Article  Google Scholar 

  96. Yan J, Baba H, Kunieda Y, Yoshihara N, Kuriyagawa T (2007) Nano precision on-machine profiling of curved diamond cutting tools using a white-light interferometer. Int J Surf Sci Eng 1:441–455

    Article  Google Scholar 

  97. Shinozaki A, Namba Y (2011) Diamond tool wear in the ultra-precision cutting of large electroless nickel coated molding dies. Int J Autom Technol 5(3):283–288

    Article  Google Scholar 

  98. Zhang S-J, To S, Cheung C-F, Jian-Jun D (2012) Novel auto-regressive measurement of diamond tool wear in ultra-precision raster milling. Int J Precis Eng Manuf 13:1661–1670

    Article  Google Scholar 

  99. Gao W, Motoki T, Kiyono S (2006) Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor. Prec Eng 30(2006):396–405

    Article  Google Scholar 

  100. Lee DE, Hwang I, Valente CMO, Oliveira JFG, Dornfeld DA (2006) Precision manufacturing process monitoring with acoustic emission. Int J Mach Tools Manuf 46:176–188

    Article  Google Scholar 

  101. Li X (2002) A brief review: acoustic emission method for tool wear monitoring during turning. Int J Mach Tools Manuf 42(2):157–165

    Article  Google Scholar 

  102. Dornfeld D, Oliveira JFG, Lee D, Valente C (2003) Analysis of tool and workpiece interaction in diamond turning using graphical analysis of acoustic emission. CIRP Ann Manuf Technol 52(1):479–482

    Article  Google Scholar 

  103. Marsh ER, Sommer EJ, Deakyne TRS, Kim GA, Simonson JA (2010) Detection of orientation-dependent, single-crystal diamond tool edge wear using cutting force sensors, while spin-turning silicon. Precis Eng 34:253–258

    Article  Google Scholar 

  104. Ko TJ, Cho DW (1994) Tool wear monitoring in diamond turning by fuzzy pattern recognition. J Manuf Sci Eng 116:225–232

    Google Scholar 

  105. Scheffer C, Heyns PS (2001) Wear monitoring in turning operations using vibration and strain measurements. Mech Syst Signal Process 15(6):1185–1202

    Article  Google Scholar 

  106. Thornton AG, Wilks J (1979) Tool wear and solid state reactions during machining. Wear 53:165–187

    Article  Google Scholar 

  107. Hitchiner MP, Wilks J (1987) Some remarks on the chemical wear of diamond and cubic BN during turning and grinding. Wear 114:327–338

    Article  Google Scholar 

  108. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–172

    Article  Google Scholar 

  109. Shamoto E, Moriwaki T (1999) Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann Manuf Technol 48:441–444

    Article  Google Scholar 

  110. Stock HR, Schlett V, Kohlscheen J, Mayr P (2001) Characterization and mechanical properties of ion-implanted diamond surfaces. Surf Coat Technol 146:425–429

    Article  Google Scholar 

  111. Brinksmeier E, Glabe R, Osmer J (2006) Ultra-precision diamond cutting of steel molds. CIRP Ann Manuf Technol 55:551–554

    Article  Google Scholar 

  112. Li ZJ, Fang FZ, Gong H, Zhang XD (2013) Effects of surface modifications on steel’s machinability in single point diamond turning. Int J Precis Technol 3:105–116

    Article  Google Scholar 

  113. Li ZJ, Fang FZ, Gong H, Zhang XD (2013) Review of diamond-cutting ferrous metals. Int J Adv Manuf Technol 68:1717–1731

    Article  Google Scholar 

  114. Ding X, Liew WYH, Ngoi BKA, Gan JGK, Yeo SH (2002) Wear of CBN tools in ultra-precision machining of STAVAX. Tribol Lett 12(1):3–12

    Article  Google Scholar 

  115. Liew WYH, Ngoi BKA, Lu YG (2003) Wear characteristics of PCBN tools in the ultra-precision machining of stainless steel at low speeds. Wear 254(3):265–277

    Article  Google Scholar 

  116. Liew WYH (2009) Experimental study on the performance of coated carbide tools in the ultra-precision machining of stainless steel. Tribol Trans 52:293–302

    Article  Google Scholar 

  117. Fujisaki K, Yokota H, Furushiro N (2009) Development of ultrafine-grain binderless cBN tool for precision cutting of ferrous materials. J Mater Process Technol 209:5646–5652

    Article  Google Scholar 

  118. Neo KS, Rahman M, Li XP, Khoo HH, Sawa M, Maeda Y (2003) Performance evaluation of pure CBN tools for machining of steel. J Mater Process Technol 140:326–331

    Article  Google Scholar 

  119. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50:61–64

    Article  Google Scholar 

  120. Ravindra D, Patten J, Jacobsen R (2013) Hybrid laser ablation–single point diamond turning machining process for CVD–silicon carbide ceramics. Int J Manuf Res 8(3):227–249

    Article  Google Scholar 

  121. Brehm R, Van Dun K, Teunissen JCG, Haisma J (1979) Transparent single-point turning of optical glass: a phenomenological presentation. Precis Eng 1(4):207–213

    Article  Google Scholar 

  122. Marksberry PW, Jawahir IS (2008) A comprehensive tool wear/tool life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. Int J Mach Tools Manuf 48:878–886

    Article  Google Scholar 

  123. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981–988

    Article  Google Scholar 

  124. W. Sawangsri, K. Cheng, (2014) An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear, Proc Inst Mech Eng B J Eng Manuf .0954405414554020.

  125. Yan J, Zhao H, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol 24:075018, 11pp

    Article  Google Scholar 

  126. B.M. Lane, (2012) Material effects and tool wear in vibration assisted machining, Ph.D. thesis, North Carolina State University.

  127. Maekawa K, Itoh A (1995) Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear 188:115–122

    Article  Google Scholar 

  128. Romero PA, Anciaux G, Molinari A, Molinari JF (2012) Friction at the tool-chip interface during orthogonal nanometric machining. Model Simul Mater Sci Eng 20(055007):1–16

    Google Scholar 

  129. Narulkar R, Bukkapatnam S, Raff LM, Komandun R (2008) Molecular dynamics simulations of diffusion of carbon into iron. Philos Mag 88:1259–1275

    Article  Google Scholar 

  130. Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2009) Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 45:358–366

    Article  Google Scholar 

  131. Cai MB, Li XP, Rahman M (2007) Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear 263:1459–1466

    Article  Google Scholar 

  132. Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. To.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S.J., To, S. & Zhang, G.Q. Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88, 613–641 (2017). https://doi.org/10.1007/s00170-016-8751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8751-9

Keywords

Navigation