Skip to main content
Log in

Microstructure and mechanical properties of friction stir welded thick pure copper plates

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, 10-mm-thick pure copper plates were friction stir welded at a constant rotational speed of 700 rpm and different traverse speeds of 50, 100, 150, and 200 mm/min using a square pin profile tool. The thermal cycles and peak temperatures were recorded using accurate thermocouples. In addition, the microstructural features of the joints were examined by optical microscopy. Furthermore, for analyzing the mechanical performance of the joints, hardness and tensile tests were conducted. In addition, the fractography of the joints was done using a scanning electron microscope. The results showed that higher traverse speeds caused lower heat input and peak temperature and hence finer grains. Furthermore, higher traverse speeds lead to formation of the defects in the joints. With increasing the traverse speed, the ultimate tensile strength of the joints increased to a maximum value and then decreased. Likewise, with increasing the traverse speed, the hardness and elongation of the joints increased and decreased, respectively. Additionally, the joints welded at lower traverse speeds revealed more ductile fracture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue P, Xie GM, Xiao BL, Ma ZY, Geng L (2010) Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall Mater Trans A 41(8):2010–2021. doi:10.1007/s11661-010-0254-y

    Article  Google Scholar 

  2. Heidarzadeh A, Saeid T (2016) A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng A 649:349–358. doi:10.1016/j.msea.2015.10.012

    Article  Google Scholar 

  3. Barenji R (2015) Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints. Trans Indian Inst Met:1–9. doi:10.1007/s12666-015-0624-7

  4. Besharati-Givi M, Asadi P (2014) Advances in friction stir welding and processing. Elsevier-Woodhead Publishing

  5. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. doi:10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  6. Barenji RV (2015) Effect of tool traverse speed on microstructure and mechanical performance of friction stir welded 7020 aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. doi:10.1177/1464420715584950

  7. Golezani AS, Barenji RV, Heidarzadeh A, Pouraliakbar H (2015) Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. Int J Adv Manuf Technol:1–10. doi:10.1007/s00170-015-7252-6

  8. Vatankhah Barenji R, Khojastehnezhad MV, Pourasl HH, Rabiezadeh A (2015) Wear properties of Al–Al2O3/TiB2 surface hybrid composite layer prepared by friction stir process. J Compos Mater. doi:10.1177/0021998315592007

    Google Scholar 

  9. Asadi P, Givi MKB, Parvin N, Araei A, Taherishargh M, Tutunchilar S (2012) On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. Int J Adv Manuf Technol 63(9–12):987–997. doi:10.1007/s00170-012-3971-0

    Article  Google Scholar 

  10. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng: R Rep 50(1–2):1–78. doi:10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  11. Heidarzadeh A, Kazemi-Choobi K, Hanifian H, Asadi P (2014) Microstructural evolution. In: Givi MKB, Asadi P (eds) Advances in friction-stir welding and processing. Woodhead Publishing, pp 65–140. doi:http://dx.doi.org/10.1533/9780857094551.65

  12. Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Intl Mater Rev 56(1):1–48. doi:10.1179/095066010X12777205875750

    Article  Google Scholar 

  13. Heidarzadeh A, Barenji R, Esmaily M, Ilkhichi A (2015) Tensile properties of friction stir welds of AA 7020 aluminum alloy. Trans Indian Inst Metals 68(5):757–767. doi:10.1007/s12666-014-0508-2

    Article  Google Scholar 

  14. Ilkhichi AR, Soufi R, Hussain G, Barenji RV, Heidarzadeh A (2014) Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA 7020 aluminum alloy joints. Metall Mater Trans B 46(1):357–365. doi:10.1007/s11663-014-0205-x

    Article  Google Scholar 

  15. Heidarzadeh A, Saeid T (2015) On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys. Data Brief 5:1022–1025. doi:10.1016/j.msea.2015.10.012

    Article  Google Scholar 

  16. Galvão I, Leal RM, Rodrigues DM, Loureiro A (2013) Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Proc Technol 213(2):129–135. doi:10.1016/j.jmatprotec.2012.09.016

    Article  Google Scholar 

  17. Leal RM, Sakharova N, Vilaça P, Rodrigues DM, Loureiro A (2011) Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets. Sci Technol Weld Join 16(2):146–152. doi:10.1179/1362171810Y.0000000005

    Article  Google Scholar 

  18. Su J-Q, Nelson TW, McNelley TR, Mishra RS (2011) Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A 528(16–17):5458–5464. doi:10.1016/j.msea.2011.03.043

    Article  Google Scholar 

  19. Farrokhi H, Heidarzadeh A, Saeid T (2013) Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Join 18(8):697–702. doi:10.1179/1362171813Y.0000000148

    Article  Google Scholar 

  20. Nakata K (2005) Friction stir welding of copper and copper alloys. Weld Int 19(12):929–933. doi:10.1533/wint.2005.3519

    Article  Google Scholar 

  21. Sun YF, Fujii H (2010) Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A 527(26):6879–6886. doi:10.1016/j.msea.2010.07.030

    Article  Google Scholar 

  22. Sakthivel T, Mukhopadhyay J (2007) Microstructure and mechanical properties of friction stir welded copper. J Mater Sci 42(19):8126–8129. doi:10.1007/s10853-007-1666-y

    Article  Google Scholar 

  23. Xu N, Ueji R, Morisada Y, Fujii H (2014) Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Mater Des 56:20–25. doi:10.1016/j.matdes.2013.10.076

    Article  Google Scholar 

  24. Heidarzadeh A, Saeid T (2013) Prediction of mechanical properties in friction stir welds of pure copper. Mater Des 52:1077–1087. doi:10.1016/j.matdes.2013.06.068

    Article  Google Scholar 

  25. Surekha K, Els-Botes A (2012) Effect of cryotreatment on tool wear behaviour of Bohler K390 and AISI H13 tool steel during friction stir welding of copper. Trans Indian Inst Metals 65(3):259–264. doi:10.1007/s12666-012-0127-8

    Article  Google Scholar 

  26. Dehghani K, Mazinani M (2011) Forming Nanocrystalline Surface Layers in Copper Using Friction Stir Processing. Mater Manuf Process 26(7):922–925. doi:10.1080/10426914.2011.564253

    Article  Google Scholar 

  27. Kumar A, Raju LS (2012) Influence of tool pin profiles on friction stir welding of copper. Mater Manuf Process 27(12):1414–1418. doi:10.1080/10426914.2012.689455

    Article  Google Scholar 

  28. Xue P, Xiao BL, Zhang Q, Ma ZY (2011) Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scr Mater 64(11):1051–1054. doi:10.1016/j.scriptamat.2011.02.019

    Article  Google Scholar 

  29. Surekha K, Els-Botes A (2011) Development of high strength, high conductivity copper by friction stir processing. Mater Des 32(2):911–916. doi:10.1016/j.matdes.2010.08.028

    Article  Google Scholar 

  30. Liu HJ, Shen JJ, Huang YX, Kuang LY, Liu C, Li C (2009) Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Sci Technol Weld Join 14(6):577–583. doi:10.1179/136217109X456951

    Article  Google Scholar 

  31. Hwang YM, Fan PL, Lin CH (2010) Experimental study on friction stir welding of copper metals. J Mater Proc Technol 210(12):1667–1672. doi:10.1016/j.jmatprotec.2010.05.019

    Article  Google Scholar 

  32. Polar A, Indacochea JE (2009) Microstructural assessment of copper friction stir welds. J Manuf Sci Eng 131(3):031012. doi:10.1115/1.3123313

    Article  Google Scholar 

  33. Pashazadeh H, Teimournezhad J, Masoumi A (2014) Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Mater Des 55:619–632. doi:10.1016/j.matdes.2013.09.028

    Article  Google Scholar 

  34. Jabbari M (2014) Elucidating of rotation speed in friction stir welding of pure copper: thermal modeling. Comput Mater Sci 81:296–302. doi:10.1016/j.commatsci.2013.08.040

    Article  Google Scholar 

  35. Heidarzadeh A, Saeid T, Khodaverdizadeh H, Mahmoudi A, Nazari E (2013) Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints. Metall Mater Trans B 44(1):175–183. doi:10.1007/s11663-012-9755-y

    Article  Google Scholar 

  36. Teimournezhad J, Masoumi A (2010) Experimental investigation of onion ring structure formation in friction stir butt welds of copper plates produced by non-threaded tool pin. Sci Technol Weld Join 15(2):166–170. doi:10.1179/136217109X12577814486610

    Article  Google Scholar 

  37. Xie GM, Ma ZY, Geng L (2007) Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater 57(2):73–76. doi:10.1016/j.scriptamat.2007.03.048

    Article  Google Scholar 

  38. Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, Nazari E (2012) Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des 35:330–334. doi:10.1016/j.matdes.2011.09.058

    Article  Google Scholar 

  39. Khodaverdizadeh H, Heidarzadeh A, Saeid T (2013) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45:265–270. doi:10.1016/j.matdes.2012.09.010

    Article  Google Scholar 

  40. Jin L-Z, Sandström R (2012) Numerical simulation of residual stresses for friction stir welds in copper canisters. J Manuf Proc 14(1):71–81. doi:10.1016/j.jmapro.2011.10.001

    Article  Google Scholar 

  41. Zhang Z, Chen JT, Zhang ZW, Zhang HW (2011) Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses. J Mater Sci 46(17):5815–5821. doi:10.1007/s10853-011-5537-1

    Article  Google Scholar 

  42. Cederqvist L, Sorensen CD, Reynolds AP, Öberg T (2009) Improved process stability during friction stir welding of 5 cm thick copper canisters through shoulder geometry and parameter studies. Sci Technol Weld Join 14(2):178–184. doi:10.1179/136217109X400420

    Article  Google Scholar 

  43. Savolainen K, Saukkonen T, Hänninen H (2012) Banding in copper friction stir weld. Sci Technol Weld Join 17(2):111–115. doi:10.1179/1362171811y.0000000089

    Article  Google Scholar 

  44. Motalleb-nejad P, Saeid T, Heidarzadeh A, Darzi K, Ashjari M (2014) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. Mater Des 59:221–226. doi:10.1016/j.matdes.2014.02.068

    Article  Google Scholar 

  45. Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials & Design 31(8):3937–3942. doi:10.1016/j.matdes.2010.03.027

    Article  Google Scholar 

  46. Zhang Z, Zhang HW (2009) Numerical studies on the effect of transverse speed in friction stir welding. Mater Des 30(3):900–907. doi:10.1016/j.matdes.2008.05.029

    Article  Google Scholar 

  47. Zhang Z, Zhang HW (2014) Solid mechanics-based Eulerian model of friction stir welding. Int J Adv Manuf Technol 72(9–12):1647–1653. doi:10.1007/s00170-014-5789-4

    Article  Google Scholar 

  48. Commin L, Dumont M, Masse JE, Barrallier L (2009) Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater 57(2):326–334. doi:10.1016/j.actamat.2008.09.011

    Article  Google Scholar 

  49. Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 77(9–12):1819–1829. doi:10.1007/s00170-014-6543-7

    Article  Google Scholar 

  50. Woo W, Balogh L, Ungar T, Choo H, Feng Z (2008) Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis. Mater Sci Eng A 498:308–313

    Article  Google Scholar 

  51. Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, Nazari E (2012) Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Mater Des 37:166–173. doi:10.1016/j.matdes.2011.12.022

    Article  Google Scholar 

  52. Barenji AV (2015) The microstructure and mechanical properties of prolonged and lower temperature aged Fe–Ni–Mn–Mo–Ti–Cr maraging steel. Materialwiss Werkst 46(11):1105–1109. doi:10.1002/mawe.201500441

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vatankhah Barenji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, A., Barenji, R.V., Barenji, A.V. et al. Microstructure and mechanical properties of friction stir welded thick pure copper plates. Int J Adv Manuf Technol 86, 1985–1995 (2016). https://doi.org/10.1007/s00170-015-8330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8330-5

Keywords

Navigation