Skip to main content

Advertisement

Log in

A study to explore the properties of electrochemical discharge effect based on pulse power supply

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Spark assisted chemical engraving (SACE) is an effective non-traditional processing technique that can be used to process non-conductive and hard brittle materials, like glass and engineering ceramics. In this study, the properties of electrochemical discharge effect based on pulse voltage were explored. To research the critical voltage of the electrochemical discharge, the effect of the electrolyte and its concentration, the diameter and the rotational speed of the tool electrode, the pulse frequency, and the duty cycle of the pulse voltage were discussed. The results indicate that changes of the parameters, except changing the rotational speed, have great influence on the critical voltage. The film formation time and the mean electric current were also discussed in this study by measuring electric current signal. In addition, the micro-hole drilling was carried out. The results show that the machining accuracy is better at the initial voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv Z, Huang CZ, Zhu HT et al (2015) A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. Int J Adv Manuf Technol 78(5–8):1361–1369. doi:10.1007/s00170-014-6528-6

    Article  Google Scholar 

  2. Wüthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. Int J Mach Tools Manuf 45(9):1095–1108. doi:10.1016/j.ijmachtools.2004.11.011

    Article  Google Scholar 

  3. Moreira JMR, Ponmozhi J, Campos JBLM et al (2015) Micro- and macro-flow systems to study Escherichia coli adhesion to biomedical materials. Chem Eng Sci 126:440–445. doi:10.1016/j.ces.2014.12.054

    Article  Google Scholar 

  4. Sang HA, Choi I, Kwon OJ, Kim JJ (2014) Hydrogen production through the fuel processing of liquefied natural gas with silicon-based micro-reactors. Chem Eng J 247(6):9–15. doi:10.1016/j.cej.2014.02.108

    Google Scholar 

  5. Chen D, Li G, Wang J et al (2013) A micro electrochemical seismic sensor based on MEMS technologies. Sensors Actuators A Phys 202(11):85–89. doi:10.1016/j.sna.2012.12.041

    Article  MathSciNet  Google Scholar 

  6. Wang ZK, Zheng HY, Seow WL, Wang XC (2015) Investigation on material removal efficiency in debris-free laser ablation of brittle substrates. J Mater Process Technol 219:133–142. doi:10.1016/j.jmatprotec.2014.12.013

    Article  Google Scholar 

  7. Huang YX, Lu JY, Huang JX (2014) KrF excimer laser precision machining of hard and brittle ceramic biomaterials. Biomed Mater 9(3):306. doi:10.1088/1748-6041/9/3/035009

    Google Scholar 

  8. Kim H, Lee S, Lee J et al (2015) Controlled patterning of vertical silicon structures using polymer lithography and wet chemical etching. J Nanosci Nanotechnol 15(6):4522–4529. doi:10.1166/jnn.2015.9780

    Article  Google Scholar 

  9. Nath C, Lim GC, Zheng HY (2012) Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52(5):605–613. doi:10.1016/j.ultras.2011.12.007

    Article  Google Scholar 

  10. Kurafuji H (1968) Electrical discharge drilling of glass. Ann CIRP 16:415–419

    Google Scholar 

  11. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40(3–4):316–323. doi:10.1007/s00170-007-1327-y

    Article  Google Scholar 

  12. Razfar MR, Behroozfar A, Ni J (2014) Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass. Precis Eng 38(4):885–892. doi:10.1016/j.precisioneng.2014.05.004

    Article  Google Scholar 

  13. Wüthrich R, Bleuler H (2004) A model for electrode effects using percolation theory. Electrochim Acta 49(9):1547–1554. doi:10.1016/j.electacta.2003.11.014

    Article  Google Scholar 

  14. Wüthrich R, Spaelter U, Bleuler H (2006) The current signal in spark-assisted chemical engraving (SACE): what does it tell us? J Micromech Microeng 16(4):779–785. doi:10.1088/0960-1317/16/4/014

    Article  Google Scholar 

  15. Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42(10):1121–1127. doi:10.1016/S0890-6955(02)00058-5

    Article  Google Scholar 

  16. Raghuram V, Pramila T, Srinivasa YG, Narayanasamy K (1995) Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon. J Mater Process Technol 52(2):301–318

    Article  Google Scholar 

  17. Han MS, Min BK, Sang JL (2008) Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode. J Micromech Microeng 18(4):45019–45026. doi:10.1088/0960-1317/18/4/045019

    Article  Google Scholar 

  18. Cheng CP, Wu KL, Mai CC et al (2010) Study of gas film quality in electrochemical discharge machining. Int J Mach Tools Manuf 50(8):689–697. doi:10.1016/j.ijmachtools.2010.04.012

    Article  Google Scholar 

  19. Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95:145–154. doi:10.1016/S0924-0136(99)00318-0

    Article  Google Scholar 

  20. Tsutsumi C, Okano K, Suto T (1993) High quality machining of ceramics. J Mater Process Technol 37(93):639–654. doi:10.1016/0924-0136(93)90124-O

    Article  Google Scholar 

  21. Yang CK, Cheng CP, Mai CC et al (2010) Effect of surface roughness of tool electrode materials in ECDM performance. Int J Mach Tools Manuf 50(12):1088–1096. doi:10.1016/j.ijmachtools.2010.08.006

    Article  Google Scholar 

  22. Zheng ZP, Su HC, Huang FY, Yan BH (2007) The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process. J Micromech Microeng 17(2):265–272. doi:10.1088/0960-1317/17/2/012

    Article  Google Scholar 

  23. Allagui A, Wüthrich R (2009) Gas film formation time and gas film life time during electrochemical discharge phenomenon. Electrochim Acta 54(23):5336–5343. doi:10.1016/j.electacta.2009.02.107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Huang, L., Jiang, Y. et al. A study to explore the properties of electrochemical discharge effect based on pulse power supply. Int J Adv Manuf Technol 85, 2107–2114 (2016). https://doi.org/10.1007/s00170-015-8302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8302-9

Keywords

Navigation