Skip to main content
Log in

Laser fabrication of diamond micro-cutting tool-related geometries using a high-numerical aperture micro-scanning system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The machining of micro-geometries requires a corresponding micro-cutting tool. Up to now, industry primarily fabricates such tools by grinding or electrical discharge machining. In this paper, an overview of the direct laser fabrication of micro-cutting tool-related geometries on polycrystalline diamond composites and single crystal diamond is presented. This is made possible using picosecond laser pulses operating at second harmonics and a micro-scanning deflection system exhibiting a high-numerical aperture. The generated geometries are inspected using scanning electron microscopy while quality of the cutting edge radius and graphitisation is investigated. The laser ablation process is further enhanced by demonstrating the feasibility of a sequential roughing and finishing strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klotzbach A, Hauser M, Beyer E (2011) Laser cutting of carbon fiber reinforced polymers using highly brilliant laser beam sources. Phys Procedia 12:572–577. doi:10.1016/j.phpro.2011.03.072

    Article  Google Scholar 

  2. Ancona A, Röser F, Rademaker K, Limpert J, Nolte S, Tünnermann A (2008) High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt Express 16:8958–8968. doi:10.1364/OE.16.008958

    Article  Google Scholar 

  3. Huo D, Cheng K (2013) Overview of micro cutting. In: Cheng K, Huo D (eds) Micro-cutting: fundamentals and applications, 1st edn. Wiley, West Sussex, pp 10–14

    Google Scholar 

  4. Harrison P, Henry M, Brownell M (2006) Laser processing of polycrystalline diamond, tungsten carbide and a related composite material. J Laser Appl 18:117–126. doi:10.2351/1.2164472

    Article  Google Scholar 

  5. Everson C, Molian P (2009) Fabrication of polycrystalline diamond microtool using a Q-switched Nd:YAG laser. Int J Adv Manuf Technol 45:521–530. doi:10.1007/s00170-009-1999-6

    Article  Google Scholar 

  6. Dold C, Henerichs M, Gilgen P, Wegener K (2013) Laser processing of coarse grain polycrystalline diamond (PCD) cutting tool inserts using picosecond laser pulses. Phys Procedia 41:610–616. doi:10.1016/j.phpro.2013.03.123

    Article  Google Scholar 

  7. Eberle G, Jefimovs K, Wegener K (2014) Characterisation of thermal influences after laser processing polycrystalline diamond composites using long to ultrashort pulse durations. Precis Eng 39:16–24. doi:10.1016/j.precisioneng.2014.06.008

    Article  Google Scholar 

  8. Weikert M, Dausinger F (2004) Cutting of diamond. In: Dausinger F, Lubatschowski H, Lichtner F (eds) Femtosecond technology for technical and medical applications. Springer, Berlin/Heidelberg, pp 155–165

    Chapter  Google Scholar 

  9. Joswig A, Risse S, Eberhardt R, Tünnermann A (2010) Laser generated and structured prototypes of diamond tool tips for microoptics fabrication. In: 25th Annual Meeting of the American Society for Precision Engineering: Proceedings 31, Atlanta, USA, pp 53–56

  10. Dumitru G, Lüscher B, Krack M, Bruneau S, Hermann J, Gerbig Y (2005) Laser processing of hardmetals: physical basics and applications. Int J Refract Met Hard 23:278–286. doi:10.1016/j.ijrmhm.2005.04.020

    Article  Google Scholar 

  11. Miyazawa H, Takeuchi S, Miyake S, Murakawa M (1996) Sintered diamond cutting inserts with chip breaker prepared by laser technique. Surf Coat Technol 86–87:797–802. doi:10.1016/S0257-8972(96)03068-X

    Article  Google Scholar 

  12. Gottmann J, Horstmann-Jungemann M, Hermans M, Beckmann D (2009) High speed and high precision fs-laser writing using a scanner with large numerical aperture. J Laser Micro/Nanoeng 4:192–196. doi:10.2961/jlmn.2009.03.0009

    Article  Google Scholar 

  13. Dold C (2013) Picosecond laser processing of diamond cutting edges. VDI-Verlag, Düsseldorf

    Google Scholar 

  14. Pinto F, Vargas G, Wegener K (2008) Simulation for optimizing grain pattern on engineered grinding tools. CIRP Ann Manuf Technol 57:353–356. doi:10.1016/j.cirp.2008.03.069

    Article  Google Scholar 

  15. Wyen C, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann Manuf Technol 59:93–96. doi:10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  16. Henerichs M, Voss R, Kuster F, Wegener K (2014) Charakterisierung der Schneidkantengeometrie für Standzeitoptimierung beim Bohren von CFK. Diam Bus 4:42–47

    Google Scholar 

  17. Yuan Z, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330. doi:10.1016/S0924-0136(96)02429-6

    Article  Google Scholar 

  18. Choi J, Lee S (2001) Efficient chip breaker design by predicting the chip breaking performance. Int J Adv Manuf Technol 17:489–497. doi:10.1007/PL00003947

    Article  Google Scholar 

  19. Jawahir I, Fang X (1995) A knowledge-based approach for designing effective grooved chip breakers—2D and 3D chip flow, chip curl and chip breaking. Int J Adv Manuf Technol 10:225–239. doi:10.1007/BF01186875

    Article  Google Scholar 

  20. Eberle G, Dold C, Wegener K (2015) Picosecond laser fabrication of micro cutting tool geometries on polycrystalline diamond composites using a high-numerical aperture micro scanning system. Proc SPIE:9351. doi: 10.1117/12.2075420

  21. Li T, Lou Q, Dong J, Wei Y, Liu J (2001) Ablation of cobalt with pulsed UV laser radiation. Appl Surf Sci 172:356–365. doi:10.1016/S0169-4332(00)00883-7

    Article  Google Scholar 

  22. Ageev P, Builov L, Konov I, Kuzmichev V, Pimenov M (1988) Interaction of laser radiation with diamond films. Dokl Akad Nauk SSSR 303:598–601

    Google Scholar 

  23. Kuznetsov V, Butenko Y (2012) Diamond phase transitions at nanoscale. In: Shenderova O, Gruen D (eds) Ultrananocrystalline diamond, 2nd edn. William Andrew, Waltham/Oxford, pp 181–244

    Chapter  Google Scholar 

  24. Corbari C, Champion A, Gecevicius M, Beresna M, Bellouard Y, Kazansky P (2013) Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass. Opt Express 21:3946–3958. doi:10.1364/OE.21.003946

    Article  Google Scholar 

  25. Zong W, Zhang J, Liu Y, Sun T (2014) Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement. Appl Surf Sci 316:617–624. doi:10.1016/j.apsusc.2014.08.057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Eberle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberle, G., Dold, C. & Wegener, K. Laser fabrication of diamond micro-cutting tool-related geometries using a high-numerical aperture micro-scanning system. Int J Adv Manuf Technol 81, 1117–1125 (2015). https://doi.org/10.1007/s00170-015-7240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7240-x

Keywords

Navigation