Skip to main content
Log in

A numerical approach to modeling keyhole laser welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A numerical study of the laser welding process is presented. The numerical model is based on a combination of the enthalpy method and the finite difference techniques applied to the heat equation that can bypass the manual enforcement of the jump condition at the phase-separating surfaces. Minimal application of the “life and death of elements techniques” is required in order for the dynamics of the keyhole to be captured. This analysis results in the construction of the flowchart of a time-stepping algorithm, suitable for any software platform or computer language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L, Hong M, Schmidt M, Zhong M, Malshe A, Huis in’tVeld B, Kovalenko V (2011) Laser nano-manufacturing—state of the art and challenges. CIRP Ann Manu Technol 60:735–755. doi:10.1016/j.cirp.2011.05.005

  2. Tönshoff HK, Egger R, Klocke F (1996) Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann Manuf Technol 45:2:553–568

    Google Scholar 

  3. Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New York

    Google Scholar 

  4. De KJ, Duflou JR, Kruth J-P (2007) Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int J Adv Manuf Technol 35:115–126

    Article  Google Scholar 

  5. Chryssolouris G (1991) Laser machining: theory and practice. Springer, New York

    Book  Google Scholar 

  6. Ready JF, Farson DF (2001) LIA handbook of laser materials processing. Magnolia Publishing, Inc., Laser Institute of America

    Google Scholar 

  7. Tsoukantas G, Stournaras A, Chryssolouris G (2008) Experimental investigation of remote welding with CO2 and Nd: YAG laser-based systems. J Laser Appl 20:50–58

    Article  Google Scholar 

  8. Klingbeil K (2006) What you need to know about remote laser welding: a look at how remote laser welding works and how it can be applied to your manufacturing process. Weld J 85:44–46

    Google Scholar 

  9. Zaeh MF, Munzert U, Oefele F (2007) Robot based remote laser-welding without scanner optics. In: Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing, pp 1–8

  10. Zaeh MF, Moesl J, Musiol J, Oefele F (2010) Material processing with remote technology-revolution or evolution? Phys Procedia 5:19–33. doi:10.1016/j.phpro.2010.08.119

    Article  Google Scholar 

  11. Fysikopoulos A, Anagnostakis D, Salonitis K, Chryssolouris G (2012) An empirical study of the energy consumption in automotive assembly. Procedia CIRP 3:477–482. doi:10.1016/j.procir.2012.07.082

    Article  Google Scholar 

  12. Anthony P (2004) The reality of remote laser welding. In Laser Solutions 19:9–11

    Google Scholar 

  13. Bemenek M (2006) Technology report: welding from a distance. In Laser Solutions 21:19–23

    Google Scholar 

  14. Sabo DA (2007) The evolution of scanners for remote welding applications: the rise of beam quality leads to proliferation of remote welding applications. http://www.thefabricator.com/article/lasercutting/the-evolution-of-scanners-for-remote-welding-applications. Accessed on 15 May 2014

  15. Verhaeghe G (2012) Remote laser welding for automotive seat production. In Laser Solutions 27:6–11

    Google Scholar 

  16. Abderrazak K, Salem WB, Mhiri H, Lepalec G, Autric M (2008) Modelling of CO2 laser welding of magnesium alloys. Opt Laser Technol 40:581–588

    Article  Google Scholar 

  17. Chen X, Wang HX (2001) A calculation model for the evaporation recoil pressure in laser material processing. J Phys D Appl Phys 34:2637–2642

    Article  Google Scholar 

  18. Khan MMA, Romoli L, Dini G, Fiaschi M (2011) A simplified energy based model for laser welding of ferritic stainless steels in overlap configuration. CIRP Ann Manuf Technol 60:215–218

    Article  Google Scholar 

  19. Phanikumar G, Chattopadhyay K (2000) Modeling of transport phenomena in laser welding of dissimilar metals. Int J Numer Methods Heat Fluid Flow 11:156–171

    Article  Google Scholar 

  20. Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814

    Article  Google Scholar 

  21. Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part I. mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections and free surface evolution. Metall Mater Trans A 33:1817–1830

    Article  Google Scholar 

  22. Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  23. Burden RL, Faires JD (1993) Numerical analysis. PWS Publishing Co., Boston

    MATH  Google Scholar 

  24. Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part II. simulation of keyhole evolution, velocity, temperature profile and experimental verification. Metal Mater Trans A 33:1831–1842

    Article  Google Scholar 

  25. Rońda J, Siwek A (2011) Modelling of laser welding process in the phase of keyhole formation. Arch Civil Mech Eng 11:739–752

    Article  Google Scholar 

  26. Al-Kazzaz H, Medraj M, Cao X, Jahazi M (2008) Nd: YAG laser welding of aerospace grade ZE41A magnesium alloy: modeling and experimental investigations. Mater Chem Phys 109:61–76

    Article  Google Scholar 

  27. Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K (2013) Some studies on temperature distribution modeling of laser butt welding of AISI 304 stainless steel sheets. World Acad Sci Eng Technol 7:1088–1097

    Google Scholar 

  28. Spina R, Tricarico L, Basile G, Sibillano T (2007) Thermo-mechanical modeling of laser welding of AA5083 sheets. J Mater Process Technol 191:215–219

    Article  Google Scholar 

  29. Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30:1293–1299

    Article  Google Scholar 

  30. Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69:245–256. doi:10.1007/s00170-013-5025-7

    Article  Google Scholar 

  31. Sugioka K, Meunier M, Piqué A (2010) Laser precision microfabrication. Springer Ser Mater Sci 135:91–120

    Article  Google Scholar 

  32. Solana P, Negro G (1997) A study of the effect of multiple reflections on the shape of the keyhole in the laser processing of materials. J Phys D Appl Phys 30:3216–3222

    Article  Google Scholar 

  33. Akhter R, Steen W, Cruciani D (1988) Laser welding of zinc coated steel. In: Proceedings of the 5th International Conference on Lasers in Manufacturing, pp 105–120

  34. Mei L, Chen G, Jin X, Zhang Y, Wu Q (2009) Research on laser welding of high strength galvanized automobile steel sheets. Optics & Lasers in Eng 47:1117–1124

    Article  Google Scholar 

  35. Bley H, Weyand L, Luft A (2007) An alternative approach for the cost-efficient laser welding of zinc coated sheet metal. CIRP Ann Manuf Technol 56:17–20. doi:10.1016/j.cirp.2007.05.006

    Article  Google Scholar 

  36. Chen G, Mei L, Zhang M, Zhang Y, Wang Z (2013) Research on key influence factors of laser overlap welding of automobile body galvanized steel. Optics Laser Technol 45:726–733

    Article  Google Scholar 

  37. Svelto O (1998) Principles of lasers. Springer, New York

    Book  Google Scholar 

  38. Douglas J, Gallie TM (1955) On the numerical integration of a parabolic differential equation subject to a moving boundary condition. Duke Math J 22(4):557–571

    Article  MATH  MathSciNet  Google Scholar 

  39. Crank J (1987) Free and moving boundary problems. Oxford University Press, pp 424

  40. Swaminathan CR, Voller VR (1993) On the enthalpy method. Int J Numer Methods Heat Fluid Flow 3:233–244

    Article  Google Scholar 

  41. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Co., Washington, New York, London, p 197

    MATH  Google Scholar 

  42. Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Methods Eng 24(1):271–284

    Article  MATH  Google Scholar 

  43. Morgan K (1981) A numerical analysis of freezing and melting with convection. Comput Methods Appl Mech Eng 28(3):275–284

    Article  Google Scholar 

  44. Morgan K, Taylor C, Brebbia CA (1980) Computer methods in fluids. Pentech Press, London, pp 257–284

    Google Scholar 

  45. Voller VR, Cross M (1981) Accurate solutions of moving boundary problems using the enthalpy method. Int J Heat Mass Transf 24(3):545–556

    Article  MATH  Google Scholar 

  46. Pastras G, Fysikopoulos A, Stavropoulos P, Chryssolouris G (2014) An approach to modeling evaporation pulsed laser drilling and its energy efficiency. Int J Adv Manuf Technol 72(9–12):1227–1241. doi:10.1007/s00170-014-5668-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Pastras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastras, G., Fysikopoulos, A., Giannoulis, C. et al. A numerical approach to modeling keyhole laser welding. Int J Adv Manuf Technol 78, 723–736 (2015). https://doi.org/10.1007/s00170-014-6674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6674-x

Keywords

Navigation