Skip to main content
Log in

Influence of the cutting fluid on process energy demand and surface roughness in grinding—a technological, environmental and economic examination

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The grinding process is characterized by a large number of undefined cutting edges that are simultaneously in contact with the workpiece to achieve a fine surface finish and a high geometrical accuracy. To enable an efficient grinding process, the application of cutting fluids is an indispensable factor. This investigation shows that—depending on the cutting fluid composition—the fluid has varying influence on the achieved technological results and on the energy consumption of the process. Therefore, it is important to identify a cutting fluid which balances technological, environmental and economic requirements. Against this background, this paper investigates the technological influence of different cutting fluids regarding the achieved surface roughness and consumed energy. On the basis of experimental data, regression models are derived and used to evaluate the environmental and economic impact. As significant extension of the state of research equation-based models for the relationship of cutting fluids and energy demand as well as quantitative indications of saving potentials are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klocke F (2009) Manufacturing processes 2—grinding, honing, lapping. Springer-Verlag Berlin Heidelberg, Germany

    Google Scholar 

  2. Winter M, Li W, Kara S, Herrmann C (2014) Determining optimal process parameters to increase the eco-efficiency of grinding processes. J Clean Prod 66:644–654

    Article  Google Scholar 

  3. Gosalia A (2012) Sustainability … and the global lubricant industry. The 16th ICIS world base oils & lubricants conference, London, UK

  4. Dettmer T (2006) Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dr.-Ing. Dissertation, TU Braunschweig, Vulkan Verlag, Essen, Germany (in German)

  5. Hipler F, Gil Girol S, Fischer RA, Wäll C (2000) Chemie gegen Reibung und Verschleiß: Untersuchung molekularer Wirkungsmechanismen von Thiadiazol-Schmierstoffadditiven. Mater Werkst 31:872–877 (in German)

  6. Bartz WJ (1994) Additive für Schmierstoffe. Expert-Verlag, Renningen-Malsheim (in German)

  7. Möller UJ, Nassar J (2002) Schmierstoffe im Betrieb. Springer Verlag GmbH, Berlin, (in German)

  8. Herrmann C, Zein A (2010) Polymer water as optimal cutting fluid—technological analysis. The 43rd CIRP international conference on manufacturing systems, Vienna, Austria, pp 236–243

  9. Winter M, Bock R, Herrmann C (2013) Investigation of a new polymer-water based cutting fluid to substitute mineral oil based fluids in grinding processes. CIRP J Manuf Sci Technol 6(4):254–262

    Article  Google Scholar 

  10. Winter M, Bock R, Herrmann C, Stache H, Wichmann H, Bahadir M (2012) Technological evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 35:176–182

    Article  Google Scholar 

  11. Wichmann H, Stache H, Schmidt C, Winter M, Bock R, Herrmann C, Bahadir M (2013) Ecological and economic evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 43:12–19

    Article  Google Scholar 

  12. Wichmann H, Bahadir M (2007) Bio-based ester oils for use as lubricants in metal working. Clean Soil Air Water 35(1):49–51

    Article  Google Scholar 

  13. Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. Int J Mach Tools Manuf 52(1):1–12

    Article  Google Scholar 

  14. Beck T (2002) Kühlschmierstoffeinsatz beim Schleifen mit CBN. Dr.-Ing. Dissertation, RWTH Aachen. Shaker Verlag, Aachen, Germany (in German)

  15. Langemeyer A (2002) Entwicklung und Bewertung von kühlschmierstofffreien Schleifsystemen beim Flachprofilschleifen. Dr.-Ing. Dissertation, Technische Universität Braunschweig. Vulkan-Verlag, Essen, Germany, (in German)

  16. Rabiey M (2010) Dry Grinding with cBN wheels—the effect of structuring. Dr.-Ing. Dissertation, Universität Stuttgart. Jost-Jetter Verlag, Hildesheim, Germany

  17. Li W, Winter M, Kara S, Herrmann C (2012) Eco-efficiency of manufacturing processes: a grinding case. CIRP Ann Manuf Technol 61(1):59–62

    Article  Google Scholar 

  18. Tönshoff HK, Peters J, Insaki I, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688

    Article  Google Scholar 

  19. Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696

    Article  Google Scholar 

  20. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. The 13th CIRP international conference on life cycle engineering. Leuven, Belgium, pp 623–627

  21. Kara S, Li W (2011) Unit process energy consumption models for manufacturing processes. CIRP Ann Manuf Technol 60(1):37–40

    Article  Google Scholar 

  22. Li W (2012) Energy and eco-efficiency of manufacturing processes. Ph.D Thesis, The University of New South Wales, Sydney, Australia

  23. Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. Industrial Press, Inc, New York

    Google Scholar 

  24. Vits R (1985) Technologische Aspekte der Kühlschmierung beim Schleifen. Dr. Ing. Dissertation, RWTH Aachen. Aachen, Germany (in German)

  25. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew Publishing, Norwich

    Book  Google Scholar 

  26. Malmodin J, Lundén D, Moberg Å, Andersson G, Nilsson M (2014) Life cycle assessment of ICT. Carbon footprint and operational electricity use from the operator, national, and subscriber perspective in Sweden. J Ind Ecol. doi:10.1111/jiec.12145

    Google Scholar 

  27. Ecoinvent Centre (2010) Database ecoinvent data v2.2. Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  28. Zein A, Öhlschläger G, Herrmann C (2011) Polymer water as optimal cutting fluid: analysis of environmental advantages. The 44th CIRP Conference on Manufacturing Systems. Madison, USA

  29. Winter M, Öhlschläger G, Dettmer T, Ibbotson S, Kara S, Herrmann C (2012) Using Jatropha oil based metalworking fluids in machining processes: a functional and ecological life cycle evaluation. Leveraging technology for a sustainable world, proceedings of the 19th CIRP conference on life cycle engineering. University of California at Berkeley, Berkeley, pp 311–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Winter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, M., Thiede, S. & Herrmann, C. Influence of the cutting fluid on process energy demand and surface roughness in grinding—a technological, environmental and economic examination. Int J Adv Manuf Technol 77, 2005–2017 (2015). https://doi.org/10.1007/s00170-014-6557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6557-1

Keywords

Navigation