Skip to main content

Advertisement

Log in

Performance of laser polishing in finishing of metallic surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser polishing is presently regarded as one of the enabling technologies hoped to eventually replace the need for time-consuming and error-prone manual polishing operations which are often required by metallic surfaces. During laser polishing, a thin layer of material is being melted as a result of laser irradiation. Since molten metal is characterized by increased relocation capabilities, laser polishing is generally accompanied by a more or less significant decrease in the surface roughness. The primary objective of this study is to present a comprehensive snapshot of the advancements made over more than one decade with respect to theoretical and experimental investigation of laser polishing technology. However, in addition to the usual review of the state-of-the-art in the field, the study places an increased emphasis on the finishing performance of the process, defined through the perspective of pre- and postpolishing surface roughness. The implementation of this metric with strong practical implications has revealed that under appropriate process parameters, certain classes of metallic materials can reduce their average surface roughness by more than 80 %, possibly to R a  = 5 nm. Nonetheless, a more rigorous and fundamental understanding of the intrinsic mechanisms underlying laser polishing remains one of the currently unfulfilled premises toward a wider industrial adoption of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jarosch UK, Massmann F, Schmidt J, Smandek B (2003) From welding to polishing. Ind Laser Solutions 4:10–12

    Google Scholar 

  2. Tuckerman DB, Weisberg AH (1986) Planarization of gold and aluminum thin-films using a pulsed laser. IEEE Electronic Device Letters 7(1):1–4

    Article  Google Scholar 

  3. Mukai R, Sasaki N, Nakano M (1987) High-aspect-ratio via-hole filling with aluminum melting by excimer laser irradiation for multilevel interconnection. IEEE Electronic Device Letters 8(2):76–78

    Article  Google Scholar 

  4. Willenborg W (2011) Polishing with laser radiation. In: Poprawe R (ed) Tailored light 2. Springer, Berlin, pp 196–202

    Google Scholar 

  5. Willenborg E, Wissenbach K, Poprawe R (2003) Polishing by laser radiation. In: Proceedings of the 2nd International WLT Conference on Lasers in Manufacturing, Munich, Germany, 297–300

  6. Poprawe R, Schulz W (2003) Development and application of new high-power laser beam sources. RIKEN Rev 50:3–10

    Google Scholar 

  7. Bereznai M, Pelsoczi I, Toth Z, Turzo K, Radnai M, Bor Z, Fazekas A (2003) Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 24(23):4197–4203

    Article  Google Scholar 

  8. Gessenharter A, Riemer O, Brinksmeier E (2003) Polishing processes for structured surfaces. In: Proceedings of the 18th ASPE Annual Meeting, Portland, OR, USA, 579–582.

  9. Brinksmeier E, Riemer O, Gessenharter A, Autschbach L (2004) Polishing of structured molds. CIRP Ann Manuf Technol 53(1):247–250

    Article  Google Scholar 

  10. Singh GP, Suk M, Albrecht TR, Kozlovsky WT (2002) Laser smoothing of the load/unload tabs of magnetic recording head gimbal assemblies. J Tribol 124(4):863–865

    Article  Google Scholar 

  11. Raeymaekers B, Talke FE (2010) The effect of laser polishing on fretting wear between a hemisphere and a flat plate. Wear 269(5–6):416–423

    Article  Google Scholar 

  12. Heng Q, Tao C, Zuo TC (2006) Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluid Nanofluid 2(4):357–360

    Article  Google Scholar 

  13. Trtica M, Gakovic B, Batani D, Desai T, Panjan P, Radak B (2006) Surface modifications of a titanium implant by a picosecond Nd : YAG laser operating at 1064 and 532 nm. Appl Surf Sci 253(5):2551–2556

    Article  Google Scholar 

  14. Trtica MS, Radak BB, Gakovic BM, Milovanovic DS, Batani D, Desai T (2009) Surface modifications of Ti6A14V by a picosecond Nd:YAG laser. Laser Part Beams 27(1):85–90

    Article  Google Scholar 

  15. Milovanovic DS, Radak BB, Gakovic BM, Batani D, Momcilovic MD, Trtica MS (2010) Surface morphology modifications of titanium based implant induced by 40 picosecond laser pulses at 266 nm. J Alloys Compd 501(1):89–92

    Article  Google Scholar 

  16. Steyn J, Naidoo K, Land K (2007) Improvement of the surface finish obtained by laser ablation with a Nd:YAG laser on pre-ablated tool steel. In: Proceedings of International Conference on Competitive Manufacturing (COMA ‘07), Stellenbosch, South Africa, 1–5

  17. Dobrev T, Phain DT, Dimov SS (2008) Techniques for improving surface quality after laser milling. Proc Inst Mech Eng B-J Eng MA 222(1):55–65

    Article  Google Scholar 

  18. Hua M, SeDao STM, Tam H (2007) Surface transformation of DF-2 steel after continuous mode laser irradiation. J Mater Process Technol 192–193(1–7):89–96

    Article  Google Scholar 

  19. Hua M, Shao T, Hong YT, Man ECH (2004) Influence of pulse duration on the surface morphology of ASSAB DF-2 (AISI-01) cold work steel treated by YAG laser. Surf Coat Technol 185(2–3):127–136

    Article  Google Scholar 

  20. Guo KW (2007) Effect of irradiation parameters on morphology of polishing DF2 (AISI-O1) surface by Nd:YAG laser. Res Lett Mater Sci 51316:5

    Google Scholar 

  21. Guo KW (2009) Effect of polishing parameters on morphology of DF2 (AISI-O 1) steel surface polished by Nd:YAG laser. Surf Eng 25(3):187–195

    Article  Google Scholar 

  22. Guo KW, Tam HY (2012) Study on polishing DF2 (AISI O1) steel by Nd: YAG laser. J Mater Sci Res 1:54–77

    Google Scholar 

  23. Nüsser C, Wehrmann I, Willenborg E (2011) Influence of intensity distribution and pulse duration on laser micro polishing. Phys Procedia 12(Part 1):462–471

    Article  Google Scholar 

  24. Marinescu NI, Ghiculescu D, Anger C (2008) Correlation between laser finishing technological parameters and materials absorption capacity. Int J Mater Form 1(suppl 1):1359–1362

    Google Scholar 

  25. Yermachenko VM, Vdovin YA, Mironov VD, Naumov NV, Petrovskiy VN, Prokopova NM, Polsky VI, Dzhumaev PS, Yakushin VL (2010) Technology of polishing of titanium surface using the fiber-laser radiation. Laser Phys 20(6):1537–1544

    Article  Google Scholar 

  26. Kumstel J, Kirsch B (2013) Polishing titanium- and nickel-based alloys using Cw-laser radiation. Phys Procedia 41:355–364

    Article  Google Scholar 

  27. Lambarri J, Leunda J, Soriano C, Sanz C (2013) Laser surface smoothing of nickel-based superalloys. Phys Procedia 41:255–265

    Article  Google Scholar 

  28. Gisario A, Bellisario D, Veniali F (2010) Thermal-morphological analysis of diode laser polishing on sintered bronze. Int J Mater Form 3:1067–1070

    Article  Google Scholar 

  29. Lamikiz A, Sanchez JA, de Lacalle LNL, Arana JL (2007) Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 47(12–13):2040–2050

    Article  Google Scholar 

  30. Lamikiz A, Sanchez JA, de Lacalle LNL, del Pozo D, Etayo JM, Lopez JM (2007) Laser polishing techniques for roughness improvement on metallic surfaces. Int J Nanomanuf 1:490–498

    Article  Google Scholar 

  31. Ukar E, Lamikiz A, De Lacalle LNL, Del Pozo D, Liebana F, Sanchez A (2010) Laser polishing parameter optimisation on selective laser sintered parts. Int J Mach Mach Mater 8:417–432

    Google Scholar 

  32. Ukar E, Lamikiz A, de Lacalle LNL, del Pozo D, Arana JL (2010) Laser polishing of tool steel with CO2 laser and high-power diode laser. Int J Mach Tools Manuf 50(1):115–125

    Article  Google Scholar 

  33. Ukar E, Lamikiz A, López de Lacalle LN, Martinez S, Liébana F, Tabernero (2010) Thermal model with phase change for process parameter determination in laser surface processing. Phys Procedia 5:395–403

    Article  Google Scholar 

  34. Ramos-Grez JA, Bourell DL (2004) Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods. Int J Mater Prod Technol 21(4):297–316

    Article  Google Scholar 

  35. Yasa E, Deckers J, Kruth J-P (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17(5):312–327

    Article  Google Scholar 

  36. Vincent C, Monteil G, Barriere T, Gelin JC (2008) Control of the quality of laser surface texturing. Microsyst Technol 14(9–11):1553–1557

    Article  Google Scholar 

  37. Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyp 5:215–221

    Article  Google Scholar 

  38. Giedl-Wagner R, Huynh QU, Hopfinger R, Pauli A (2007) Ablation behaviour of metals for the mould and die industry. In: Proceedings of the 5th International Conference on Laser Assisted Net-Shape Engineering (LANE 2007), Erlangen, Germany

  39. Gisario A, Boschetto A, Veniali F (2011) Surface transformation of AISI 304 stainless steel by high power diode laser. Opt Lasers Eng 49(1):41–51

    Article  Google Scholar 

  40. Chow MTC, Hafiz AMK, Tutunea-Fatan OR, Knopf GK, Bordatchev EV Experimental statistical analysis of laser micropolishing process. In: Optomechatronic technologies (ISOT), 2010 International Symposium, 25–27 Oct. 2010. pp 1–6

  41. Chow MC, Bordatchev E, Knopf G (2013) Experimental study on the effect of varying focal offset distance on laser micropolished surfaces. Int J Adv Manuf Technol 67(9–12):2607–2617

    Article  Google Scholar 

  42. Hafiz AMK, Bordatchev EV, Tutunea-Fatan RO (2012) Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. J Manuf Process 14(4):425–434

    Article  Google Scholar 

  43. Temmler A, Graichen K, Donath J (2010) Laser polishing in medical engineering. vol 7. Wiley, Weinheim, pp 53–57

    Google Scholar 

  44. Ramos JA, Murphy J, Wood K, Bourell DL, Beaman JJ (2001) Surface roughness enhancement of indirect SLS metal parts by laser surface polishing. In: Proceedings of 12th Solid Freeform Fabrication Symposium, Texas, USA, pp. 28–38

  45. Ramos JA, Bourell DL (2002) Modeling of surface roughness enhancement of indirect-SLS metal parts by laser surface polishing. Rapid Prototyping of Materials Proceedings pp. 191–202

  46. Ramos JA, Bourell DL, Beaman JJ (2003) Surface over-melt during laser polishing of indirect-SLS metal parts. In: Materials Research Society Symposium Proceedings. Materials Research Society, pp 53–61

  47. Shao TM, Hua A, Tam HY, Cheung EHM (2005) An approach to modelling of laser polishing of metals. Surf Coat Tech 197(1):77–84

    Article  Google Scholar 

  48. Mai TA, Lim GC (2004) Micromelting and its effects on surface topography and properties in laser polishing of stainless steel. J Laser Appl 16(4):221–228

    Article  Google Scholar 

  49. Perry TL, Werschmoeller D, Li XC, Pfefferkorn FE, Duffie NA (2009) The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples. Trans ASME J Manuf Sci Eng 131(3)

  50. Perry TL, Werschmoeller D, Duffie NA, Li XC, Pfefferkorn FE (2009) Examination of selective pulsed laser micropolishing on microfabricated nickel samples using spatial frequency analysis. Trans ASME J Manuf Sci Eng 131(2)

  51. Perry TL, Werschmoeller D, Li X, Pfefferkorn FE, Duffie NA (2009) Pulsed laser polishing of micro-milled Ti6Al4V samples. J Manuf Process 11(2):74–81

    Article  Google Scholar 

  52. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford, pp 237–240, Chapter 7

    Google Scholar 

  53. Vadali M, Ma C, Duffie NA, Li X, Pfefferkorn FE (2012) Pulsed laser micro polishing: surface prediction model. J Manuf Process 14(3):307–315

    Article  Google Scholar 

  54. Pfefferkorn FE, Duffie NA, Li X, Vadali M, Ma C (2013) Improving surface finish in pulsed laser micro polishing using thermocapillary flow. CIRP Ann Manuf Technol 62(1):203–206

    Article  Google Scholar 

  55. Ukar E, Lamikiz A, Martínez S, Tabernero I, Lacalle LLN (2012) Roughness prediction on laser polished surfaces. J Mater Process Technol 212(6):1305–1313

    Article  Google Scholar 

  56. Stout KJ, Sullivan PJ, Dong WP, Mainsah E, Luo N, Mathia T, Zahouani H (2000) The Development of methods for the characterisation of roughness in three dimensions, 1st edition, Butterworth-Heinemann

  57. Bol’shepaev OY, Katomin NN (1997) Laser polishing of glass articles. Glas Ceram 54(5–6):141–142

    Article  Google Scholar 

  58. Temmler A, Willenborg E, Wissenbach K (2011) Design surfaces by laser remelting. Phys Procedia 12:419–430

    Article  Google Scholar 

  59. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. The Clarendon Press, Oxford

    Google Scholar 

  60. Anthony TR, Cline HE (1977) Surface rippling induced by surface-tension gradients during laser surface melting and alloying. J Appl Phys 48:3888–3894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Remus Tutunea-Fatan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 87.2 KB)

ESM 2

(DOCX 19.2 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordatchev, E.V., Hafiz, A.M.K. & Tutunea-Fatan, O.R. Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73, 35–52 (2014). https://doi.org/10.1007/s00170-014-5761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5761-3

Keywords

Navigation