Skip to main content
Log in

Geometric error compensation software system for CNC machine tools based on NC program reconstructing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

It has been proved that error compensation is an effective approach to improve machining accuracy of a machine tool cost efficiently. In this paper, the framework of an error compensation software system, which can realize software error compensation via numerical control (NC) programs reconstructing, is investigated. And the algorithms relating to error prediction are discussed in detail, such as positioning movement error compensation, linear interpolation movement, and circular interpolation movement error compensation. To realize the error compensation, NC program is reconstructed according to the predicted errors during virtual machining before it is fed to the actual machining. Two controlled machining experiments were carried out. The results show that error compensation methods via reconstructing NC programs can improve the movement accuracy of a computer numerical control CNC machine tool obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JS, Yuan J, Ni J (1996) Thermal error modeling for real-time error compensation. Int J Adv Manuf Technol 12(4):266–275

    Article  Google Scholar 

  2. Yang JG, Ren YQ, Liu GL, Zhao HT, Dou XL, Chen WZ, He SW (2005) Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center. Int J Adv Manuf Technol 26:814–818

    Article  Google Scholar 

  3. Ferreira PM, Liu CR, Merchant E (1986) A contribution to the analysis and compensation of the geometric error of a machining center. CIRP Ann Manuf Technol 35(1):259–262. doi:10.1016/S0007-8506(07)61883-6

    Article  Google Scholar 

  4. Li YX, Yang JG, Gelvis T, Li YY (2008) Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol 35:745–750

    Article  Google Scholar 

  5. Liang JC, Li HF, Yuan JX, Ni J (1997) Comprehensive error compensation system for correcting geometric, thermal, and cutting force-induced errors. Int J Adv Manuf Technol 13(10):708–712

    Article  Google Scholar 

  6. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tool—a review: part II: thermal errors. Int J Mach Tool Manuf 40(9):1257–1284. doi:10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  7. Wang SM, Yu HJ, Liao HW (2006) A new high-efficiency error compensation system for CNC multi-axis machine tools. Int J Adv Manuf Technol 28(5–6):518–526. doi:10.1007/s00170-004-2389-8

    Article  MATH  Google Scholar 

  8. Kang Y, Chang CW, Huang Y, Hsu CL, Nieh IF (2007) Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. Int J Mach Tool Manuf 47(2):376–387. doi:10.1016/j.ijmachtools.2006.03.007

    Article  Google Scholar 

  9. Li JG, Zhao H, Yao YX, Liu CQ (2008) Off-line optimization on NC machining based on virtual machining. Int J Adv Manuf Technol 36(9–10):908–917. doi:10.1007/s00170-006-0915-6

    Article  Google Scholar 

  10. Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132. doi:10.1007/s00170-008-1791-z

    Article  Google Scholar 

  11. Zhang HT, Yang JG, Zhang Y, Shen JH, Wang C (2011) Measurement and compensation for volumetric positioning errors of CNC machine tools considering thermal effect. Int J Adv Manuf Technol 55(1–4):275–283. doi:10.1007/s00170-010-3024-5

    Article  Google Scholar 

  12. Xi XC, Poo AN, Hong GS, Huo F (2011) Experimental implementation of Taylor series expansion error compensation on a bi-axial CNC machine. Int J Adv Manuf Technol 53(1–4):285–299. doi:10.1007/s00170-010-2843-8

    Article  Google Scholar 

  13. Wu CW, Tang CH, Chang CF, Shiao YS (2011) Thermal error compensation method for machine center. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3533-x

  14. Khan AW, Chen WY (2011) A methodology for systematic geometric error compensation in five-axis machine tools. Int J Adv Manuf Technol 53(5–8):615–628. doi:10.1007/s00170-010-2848-3

    Article  Google Scholar 

  15. Ni J (1997) CNC machine accuracy enhancement through real-time error compensation. ASME Trans J Manuf Sci Eng 119:717–724

    Article  Google Scholar 

  16. Yuan JX, Ni J (1998) The real-time error compensation technique for CNC machining systems. Mechatronics 8(4):359–380. doi:10.1016/S0957-4158(97)00062-7

    Article  Google Scholar 

  17. Anjanappa M, Anand DK, Kirk JA, Shyam S (1988) Error correction methodologies and control strategies for numerical control machining. Am Soc Mech Eng, Dyn Syst Control Div (Publ) DSC 9:41–49

    Google Scholar 

  18. Duffie NA, Malmberg SJ (1987) Error diagnosis and compensation using kinematic models and position error data. Ann CIRP 36(1):355–358

    Article  Google Scholar 

  19. Barakat NA, Elbestawi MA, Spence AD (2000) Kinematic and geometric error compensation of a coordinate measuring machine. Int J Mach Tool Manuf 40(6):833–850. doi:10.1016/S0890-6955(99)00098-X

    Article  Google Scholar 

  20. Okafor AC, Ertekin YM (2000) Vertical machining center accuracy characterization using laser interferometer. Part I: Linear positional errors. J Mater Process Technol 105(3):394–406. doi:10.1016/S0924-0136(00)00661-0

    Article  Google Scholar 

  21. Okafor AC, Ertekin YM (2000) Vertical machining center accuracy characterization using laser interferometer. Part II: Angular errors. J Mater Process Technol 105(3):407–420. doi:10.1016/S0924-0136(00)00662-2

    Article  Google Scholar 

  22. Rahman M, Heikkala J, Lappalainen K (2000) Modeling, measurement and error compensation of multi-axis machine tools. Part I: Theory. Int J Mach Tool Manuf 40(10):1535–1546. doi:10.1016/S0890-6955(99)00101-7

    Article  Google Scholar 

  23. Chen T, Peng FY, Zhou YF (2003) Post transform of multi-axis machine based on structural error compensation. Manuf Inf Eng China 32(2):88–90 (In Chinese)

    MathSciNet  Google Scholar 

  24. Li YM, Shen XQ, Wang AL (2009) Study on the method of the correcting NC command for the error compensation of NC machine. J Shaanxi Univ Sci Technol 27:80–83 (In Chinese)

    Google Scholar 

  25. Jing HJ, Yao YX, Chen SD, Wang XP (2006) Machining accuracy enhancement by modifying NC program. Key Eng Mater 315–316:71–75

    Article  Google Scholar 

  26. Li XL (2006) Modelling and compensating for comprehensive geometric errors of NC machine tools. PhD dissertation, Huazhong University of Science and Technology, P. R. China. 57–58. (In Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangwei Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, G., Lu, Y., Li, J. et al. Geometric error compensation software system for CNC machine tools based on NC program reconstructing. Int J Adv Manuf Technol 63, 169–180 (2012). https://doi.org/10.1007/s00170-011-3895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3895-0

Keywords

Navigation