Skip to main content
Log in

Review of research work in sinking EDM and WEDM on metal matrix composite materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) are newly advanced materials having the properties of light weight, high specific strength, good wear resistance and a low thermal expansion coefficient. These materials are extensively used in industry. Greater hardness and reinforcement makes it difficult to machine using traditional techniques, which has impeded the development of MMCs. The use of traditional machinery to machine hard composite materials causes serious tool wear due to the abrasive nature of reinforcement. These materials can be machined by many non-traditional methods like water jet and laser cutting but these processes are limited to linear cutting only. Electrical discharge machining (EDM) shows higher capability for cutting complex shapes with high precision for these materials. The paper presents a review of EDM process and year wise research work done in EDM on MMCs. The paper also discusses the future trend of research work in the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  2. Kansal HK, Sehijpal S, Pradeep K (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41

    Article  Google Scholar 

  3. Abu Zeid OA (1997) On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel. J Mater Process Technol 68(1):27–32

    Article  Google Scholar 

  4. Ramasawmy H, Blunt (2004) Effect of EDM process parameters on 3D surface topography. J Mater Process Technol 148:155–164

    Article  Google Scholar 

  5. Rudorff DW (1961) Spark machining and its development. Metal Treatment and Drop Forging: 28 (186): 120–124

  6. Pandey PC, Shan HS (1999) Modern machining process. Tata McGraw-Hill Publishing Company Ltd, ISBN 0070965536, 84–113

  7. Smith GV (1961) Spark machining—fundamental and techniques. J Br Inst Radio Eng 22:409

    Google Scholar 

  8. Luis CJ, Puertas I, Villa G (2005) Material removal rate and electrode wear study on the EDM of silicon carbide. J Mater Process Technol 164–165:889–896

    Article  Google Scholar 

  9. Bojorquez B, Marloth RT, Es-Said OS (2002) Formation of a crater in the work piece on an electrical discharge machine. Eng Fail Anal 9:93–97

    Article  Google Scholar 

  10. Marafona J, Chousal AG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602

    Article  Google Scholar 

  11. Singh S, Maheshwari S, Pandey PC (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149:272–277

    Article  Google Scholar 

  12. Rajurkar KP (1994) Handbook of design, manufacturing and automation. Chapter 13: nontraditional manufacturing processes. Wiley, USA, ISBN 0471552186

    Google Scholar 

  13. Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436

    Article  Google Scholar 

  14. Fuller JE (1996) Electrical discharge machining. ASM Machining Handbook 16:557–564

    Google Scholar 

  15. Crookall JR, Heuvelman CJ (1971) Electro-discharge machining—the state of the art. Annals of the CIRP 20(1):113–120

    Google Scholar 

  16. De Bruyn HE (1968) Slope control—a great improvement in spark erosion. Annals of the CIRP 16:183–186

    Google Scholar 

  17. Pandit SM, Mueller TM (1987) Verification of on-line computer control of EDM by data dependent systems. J Eng Ind 109:109–121

    Google Scholar 

  18. Lin CL, Lin JL, Ko TC (2002) Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int j Adv Manuf Technol 19(4):271–277

    Article  Google Scholar 

  19. Lin JL, Wang KS, Yan BH, Tarng YS (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102:48–55

    Article  Google Scholar 

  20. Tzeng YF, Chen FC (2003) A simple approach for robust design of high-speed electrical discharge machining technology. Int J Mach Tools Manuf 43(3):217–227

    Article  Google Scholar 

  21. Marafona J, Wykes C (2000) A new method of optimizing material removal rate using EDM with copper tungsten electrodes. Int J Mach Tools Manuf 40(2):153–164

    Article  Google Scholar 

  22. Lonardo PM, Bruzzone AA (1999) Effect of flushing and electrode material on die-sinking EDM. CIRP Annals—Manufac Tech 48(1):123–126

    Article  Google Scholar 

  23. Wong YS, Lim LC, Lee LC (1995) Effect of flushing on electro-discharge machined surfaces. J Mater Process Technol 48:299–305

    Article  Google Scholar 

  24. Anonymous (1982) Dielectric fluids for electro discharge machining. British Petroleum Company, UK

    Google Scholar 

  25. Guu YH, Hocheng H (2001) Effects of work piece rotation on machinability during electrical discharge machining. J Mater Man Proc 16(1):91–101

    Article  Google Scholar 

  26. Soni JS, Chakraverty G (1994) Machining characteristics of titanium with rotary electro-discharge machining. Wear 171:51–58

    Article  Google Scholar 

  27. Yan BH, Wang C, Liu WD, Huang FY (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333

    Article  Google Scholar 

  28. Kagaya K, Oishi Y, Yada K (1986) Micro-electro discharge machining using water as a working fluid—I: micro-hole drilling. Precis Eng 8(3):157–162

    Article  Google Scholar 

  29. Sato T, Mizutani T, Yonemochi K, Kawata K (1986) The development of an electrodischarge machine for micro-hole boring. Precis Eng 8(3):163–168

    Article  Google Scholar 

  30. Soni JS, Chakraverti G (1996) Experimental investigation on migration of material during EDM of T 215 Cr12 die steel. J Mater Process Technol 56:439–451

    Article  Google Scholar 

  31. Roethel F, Garbajs V (1976) Contributions to the micro-analysis of spark-eroded surfaces. Annals of the CIRP 25(1):135–140

    Google Scholar 

  32. Erden (1983) Effect of materials on the mechanism of electric-discharge machining (EDM). J Eng Mater Technol 105:132–138

    Article  Google Scholar 

  33. Bayramoglu M, Duffill AW (1995) Manufacturing linear and circular contours using CNC EDM and frame type tools. Int J Mach Tools Manuf 35(8):1125–1136

    Article  Google Scholar 

  34. Saito K, Kishinami T, Konno H, Sato M, Takeyama H (1986) Development of numerical contouring control electrical discharge machining (NCC-EDM). CIRP Annals—Manufac Tech 35(1):117–120

    Article  Google Scholar 

  35. Kaneko T, Tsuchiya M (1984) Three dimensionally controlled EDM using cylindrical electrode. J Japan Soc Electr Mach Eng 18(35):1–4

    Google Scholar 

  36. Mohri N, Suzuki M, Furuya M, Saito N (1995) Electrode wear process in electrical discharge machining. Annals of CIRP 44(1):165–168

    Article  Google Scholar 

  37. Staelens F, Kruth JP (1989) A computer integrated machining strategy for planetary EDM. Annals of CIRP 38(1):187–190

    Article  Google Scholar 

  38. Schumacher BM (1983) EDM technology for precision work pieces with excellent surface quality. Proceedings of the ISEM–7, 124–135

  39. Lok YK, Lee TC (1995) Wire-cut electrical discharge machining of SIALON ceramics. Proceedings of the Seventh International Manufacturing Conference with China. Harbin, China, pp 71–76

    Google Scholar 

  40. Yan Mu-Tian, Lai Yi-Peng (2007) Surface quality improvement of wire-EDM using a fine-finish power supply. Int J Mach Tools Manuf 47:1686–1694

    Article  Google Scholar 

  41. Katz Z, Tibbles CJ (2005) Analysis of micro-scale EDM process. Int J Adv Manuf Technol 25:923–928

    Article  Google Scholar 

  42. Dhanik S, Joshi SS, Ramakrishnan N, Apte PR (2005) Evolution of EDM process modelling and development towards modelling of the micro-EDM process. Int J Manuf Technol Manag 7:157–180

    Article  Google Scholar 

  43. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33

    Article  Google Scholar 

  44. Furutani K, Saneto A, Takezawa H, Mohri N, Miyake H (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng 25:138–144

    Article  Google Scholar 

  45. Clyne TW, Withers PJ (1993) An introduction to metal-matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Taya M, Arsenault RJ (1989) Metal-matrix composites. Thermo mechanical behavior. Pergamon Press

  47. Jahanmir S, Ramulu M, Koshoi P (1999) (eds) machining of ceramics and composites. Marcal Dekker Inc., New York

  48. Hamatami G, Ramulu M (1990) Machinability of high temperature composites by abrasive water jet. ASME J Eng Mater Technol 112(4):381–386

    Article  Google Scholar 

  49. Hung NP, Yang IJ, Leong KW (1994) Electrical discharge machining of cast metal matrix composites. J Mater Process Technol 41:229–236

    Article  Google Scholar 

  50. Muller F, Monaghan J (2001) Non-conventional machining of particle reinforced metal matrix composites. J Mater Process Technol 118:278–285

    Article  Google Scholar 

  51. Guitrau EP (1997) The EDM handbook. Hanser Gardner Publication, Cincinnati, Ohio

    Google Scholar 

  52. Rajukar KP, Pandit SM (2004) Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J Mater Proc Technol 149(1–3):266–271

    Google Scholar 

  53. Rajukar KP, Wang WM (1997) Improvement of EDM performance with advanced monitoring and control systems. J Manuf Sci Eng 119:770–774

    Article  Google Scholar 

  54. Ramulu M (1988) EDM sinker cutting of ceramic particulate composite SiC-TiB2. Adv Ceram Mater 3(4):324–327

    Google Scholar 

  55. Ramulu M, Garbini J (1991) EDM surface characterization of a ceramic composite TiB2/SiC. ASME J Eng Mater Technol 113(4):437–442

    Article  Google Scholar 

  56. Ramulu M, Sec HW, Wang DH (1990) Machining of ceramic composites TiB2/SiC by spark erosion. Manuf Rev 3(2):123–129

    Google Scholar 

  57. Ramulu M, Taya M (1989) EDM machining of SiCw/Al composite. J Mater Sci 24:1103–1108

    Article  Google Scholar 

  58. DeSilva A, Rankine DJ (1995) Electrical discharge machining of metal matrix composites. Proc. int. Symp. for Electro Machining XI, Switzerland 75–84

  59. Fan WW (1993) EDM Characteristic of the SiC particles reinforce aluminum matrix composite Masters Thesis, National Central University, Taiwan

  60. Hocheng H, Lei WI, Hsu HS (1997) Preliminary study of material removal in electric discharge machining of SiC/Al. J Mater Process Technol 63:813–818

    Article  Google Scholar 

  61. Karthikeyan R, Lakshmi Narayanan PR, Naagarazan RS (1999) Mathematical modeling for electric discharge machining of aluminium–silicon carbide particulate composites. J Mater Process Technol 87:59–63

    Article  Google Scholar 

  62. Muller F, Monaghan J (2000) Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf 40:1351–1366

    Article  Google Scholar 

  63. Ramulu M, Paul G, Patel J (2001) EDM surface effects on fatigue strength of 15 vol.% SiCp/Al metal matrix composite material. Compos Struct 54:79–86

    Article  Google Scholar 

  64. Mohan B, Rajadurai A, Satyanaray KG (2002) Effect of SiC and rotation of electrode on electric discharge machining of Al-SiC composite. J Mater Process Technol 124:297–304

    Article  Google Scholar 

  65. Wang CC, Yan BH (2000) Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining. J Mater Process Technol 102:90–102

    Article  Google Scholar 

  66. Narender Singh P, Raghukandan K, Pai BC (2004) Optimization by Grey relational of EDM parameters on machining Al–10%SiCp composites. J Mater Process Technol 155–156:1658–1661

    Article  Google Scholar 

  67. Narender Singh P, Raghukandan K, Rathinasabapathi M, Pai BC (2004) Electric discharge machining of Al–10%SiCp as-cast metal matrix composites. J Mater Process Technol 155–156:1653–1657

    Article  Google Scholar 

  68. Mohan B, Rajadurai A, Satyanarayana KG (2004) Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. J Mater Process Technol 153–154:978–985

    Article  Google Scholar 

  69. Seo YW, Kim D, Ramulu M (2006) Electrical discharge machining of functionally graded 15-35 vol.% SiCp/Al composites. Material and Manufacturing Processes 21:479–487

    Article  Google Scholar 

  70. Sushant D, Rajesh P, Nishant S, Akhil S, Hemath KG (2007) Mathematical modeling of electric discharge machining of cast Al–4Cu–6Si alloy–10 wt.% SiCp composites. J Mater Process Technol 194:24–29

    Article  Google Scholar 

  71. Akshay D, Pradeep K, Inderdeep S (2008) Experimental investigation and optimization in EDM of Al 6063 SiCp metal matrix composite. Int J Machin Machinab Mater 5(3/4):293–308

    Google Scholar 

  72. Yan BH, Wang CC (1999) The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode. J Mater Process Technol 95:222–231

    Article  Google Scholar 

  73. Kansal HK, Sehijpal S, Pradeep K (2006) An experimental study of the machining parameters in powder mixed electric discharge machining of Al–10%SiCP metal matrix composites. Int J Machin Machinab Mater 1(4):396–411

    Article  Google Scholar 

  74. Shankar S, Sachi M, Chandra PP (2008) Effect of SiC powder- suspended dielectric fluid on the surface finish of 6061Al/Al2O3P/20p composites during electric discharge machining. Int J Machin Machinab Mater 4(2/3):252–274

    Article  Google Scholar 

  75. Riaz Ahamed A, Asokan P, Aravindan S (2009) EDM of hybrid Al–SiCp–B4Cp and Al– SiCp–Glassp MMCs. Int J Adv Manuf Technol 44:520–528

    Article  Google Scholar 

  76. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259

    Article  Google Scholar 

  77. Poon, Lee TC (1993) Electrical discharge machining of particulate metal matrix composites. Proceedings of the ASME 1993 Materials Congress, Pittsburgh, PA, pp 43–50

    Google Scholar 

  78. Roux Le, Wise MLH, Aspinwall DK (1993) Electric discharge machining of an aluminum alloy silicon carbide reinforced metal matrix composite. Proceedings of the 30th MATADOR Conference, Manchester, pp 247–254

    Google Scholar 

  79. Gatto A, Iuliano L (1997) Cutting mechanism and surface features of WED machined metal matrix composite. J Mater Process Technol 65:209–214

    Article  Google Scholar 

  80. Rozenek M, Kozak J, Dalbrowski L, Eubkowski K (2001) Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol 109:367–370

    Article  Google Scholar 

  81. Guo ZN, Wang X, Huang ZG, Yue TM (2002) Experimental investigation into shaping particles-reinforce material by WEDM-HS. J Mater Process Technol 129:56–59

    Article  Google Scholar 

  82. Yan BH, Tsai HC, Huang FY, Lee LC (2005) Examination of wire electrical discharge machining of Al2O3p/6061Al composites. Int J Mach Tools Manuf 45:251–259

    Article  Google Scholar 

  83. Patil NG, Brahmankar PK (2006) Some investigations into wire electro-discharge machining performance of Al/SiCp composites. Int J Machin Machin Mater 1(4):412–431

    Article  Google Scholar 

  84. Manna A, Bhattacharyya B (2006) Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PR AlSiC MMC. Int J Adv Manu Tech 28:67–75

    Article  Google Scholar 

  85. Probir S, Debashis T, Pal Surjya K, Partha S, Srivastava Ashok K, Karabi D (2009) Modeling of wire electro-discharge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. Int J Adv Manuf Technol 43:107–116

    Article  Google Scholar 

  86. Liu JW, Yue TM, Guo ZN (2009) Wire electrochemical discharge machining of Al2O3 particle reinforced aluminum alloy 6061. Mater Manuf Process 24:446–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanjit Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, R.K., Singh, K.K., Sachdeva, A. et al. Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50, 611–624 (2010). https://doi.org/10.1007/s00170-010-2534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2534-5

Keywords

Navigation