Skip to main content
Log in

Using pre-operative MRI to predict intraoperative hamstring graft size for anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Large variation in tendon size between individuals makes hamstring graft diameter for anterior cruciate ligament (ACL) reconstruction unpredictable. Inadequate graft diameter may necessitate an alternative source of tissue requiring pre-operative planning. The purpose of this study was to determine whether magnetic resonance image (MRI) measurements and clinical anthropometric data are predictive of hamstring tendon graft diameter.

Methods

Data from 109 patients having ACL reconstruction with semitendinosus–gracilis (STGT) autograft were retrospectively evaluated. Cross-sectional area (CSA) of the gracilis tendon (GT) and semitendinosus tendon (ST) were determined from pre-operative MRI scans. Variables included pre-operative height, weight, body mass index (BMI), age and gender; and intra-operative graft diameter.

Results

Correlations between anthropometric variables, hamstring tendons CSA and intra-operative graft diameter were calculated. Multiple stepwise regression was performed to assess the predictive value of these variables to graft diameter. Sensitivity and specificity were calculated to evaluate the utility of MRI CSA measurements in accurately identifying inadequate graft diameter (<8 mm). All anthropometric variables were positively correlated with intraoperative graft diameter (p < 0.01). Semitendinosus–gracilis tendon CSA (p < 0.001) and STGT CSA and weight (p < 0.001) were significantly predictive models of graft diameter. Sensitivity and specificity were 79 and 74 %, respectively.

Conclusion

The strongest indicators of a four-stranded STGT graft for primary ACL reconstruction were STGT CSA on MRI plus weight. Measurement of graft diameter can be performed pre-operatively via MRI to identify tendons that may be of inadequate size for ACL reconstruction. This can assist with surgical planning to determine the most appropriate graft choice.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beyzadeoglu T, Akgun U, Tasdelen N, Karahan M (2011) Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1293–1297

    Article  PubMed  Google Scholar 

  2. Bickel BA, Fowler TT, Mowbray JG, Adler B, Klingele K, Phillips G (2008) Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament. Arthroscopy 24:1336–1341

    Article  PubMed  Google Scholar 

  3. Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31:1084–1090

    Article  PubMed  Google Scholar 

  4. Celiktas M (2013) Prediction of the quadruple hamstring autograft thickness in ACL reconstruction using anthropometric measures. Acta Orthop Traumatol Turc 47:14–18

    Article  PubMed  Google Scholar 

  5. Donnelly L, Patten D, White P, Finn G (2009) Virtual human dissector as a learning tool for studying cross-sectional anatomy. Med Teach 31:553–555

    Article  PubMed  Google Scholar 

  6. Erquicia JI, Gelber PE, Doreste JL, Pelfort X, Abat F, Monllau JC (2013) How to improve the prediction of quadrupled semitendinosus and gracilis autograft sizes with magnetic resonance imaging and ultrasonography. Am J Sports Med 41:1857–1863

    Article  PubMed  Google Scholar 

  7. Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328

    Article  PubMed  Google Scholar 

  8. Hamada M, Shino K, Mitsuoka T, Abe N, Horibe S (1998) Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction. Arthroscopy 14:696–701

    Article  CAS  PubMed  Google Scholar 

  9. Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain 8:221–223

    Article  Google Scholar 

  10. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  11. Leiter JRS, de Korompay N, Macdonald L, McRae S, Froese W, Macdonald PB (2011) Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique. Knee Surg Sports Traumatol Arthrosc 19:1258–1264

    Article  PubMed  Google Scholar 

  12. Leiter JRS, Peeler J, Anderson JE (2011) Exercise-induced muscle growth is muscle-specific and age-dependent. Muscle Nerve 43:828–838

    Article  PubMed  Google Scholar 

  13. Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17:81–83

    Article  PubMed  Google Scholar 

  14. Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    Article  PubMed  Google Scholar 

  15. Marx RG, Jones EC, Angel M, Wickiewicz TL, Warren RF (2003) Beliefs and attitudes of members of the American academy of orthopaedic surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy 19:762–770

    Article  PubMed  Google Scholar 

  16. McRae SM, Chahal J, Leiter JR, Marx RG, Macdonald PB (2011) Survey study of members of the Canadian Orthopaedic Association on the natural history and treatment of anterior cruciate ligament injury. Clin J Sport Med 21:249–258

    Article  PubMed  Google Scholar 

  17. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58:1074–1082

    Article  CAS  PubMed  Google Scholar 

  18. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2012) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1111–1118

    Article  PubMed  Google Scholar 

  19. Pinheiro LFB, Andrade MAP, Teixeira LEM, Bicalho LAL, Lemos WG, Azeredo SAC, Silva LA, Gonzaga LGA (2011) Intra-operative four-stranded hamstring tendon graft diameter evaluation. Knee Surg Sports Traumatol Arthrosc 19:811–815

    Article  PubMed  Google Scholar 

  20. Schimoler PJ, Braun DT, Miller MC, Akhavan S (2015) Quadrupled hamstring graft strength as a function of clinical sizing. Arthroscopy 31:1091–1096

    Article  PubMed  Google Scholar 

  21. Schwartzberg R, Burkhart B, Lariviere C (2008) Prediction of hamstring tendon autograft diameter and length for anterior cruciate ligament reconstruction. Am J Orthop Belle Mead NJ 37:157–159

    PubMed  Google Scholar 

  22. Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36:2204–2209

    Article  PubMed  Google Scholar 

  23. Tuman JM, Diduch DR, Rubino LJ, Baumfeld JA, Nguyen HS, Hart JM (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35:1945–1949

    Article  PubMed  Google Scholar 

  24. Wernecke G, Harris IA, Houang MTW, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:1055–1059

    Article  PubMed  Google Scholar 

  25. Yasumoto M, Deie M, Sunagawa T, Adachi N, Kobayashi K, Ochi M (2006) Predictive value of preoperative 3-dimensional computer tomography measurement of semitendinosus tendon harvested for anterior cruciate ligament reconstruction. Arthroscopy 22:259–264

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the assistance of Alexandra Legary and Scott Mollison for CSA measurements of MRI; Chris Walmsley for data retrieval; Treny Sasyniuk for manuscript review; and the MRI department at the Pan Am Clinic for their assistance. This project received financial support from the Pan Am Clinic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Leiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiter, J., Elkurbo, M., McRae, S. et al. Using pre-operative MRI to predict intraoperative hamstring graft size for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25, 229–235 (2017). https://doi.org/10.1007/s00167-016-4205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4205-z

Keywords

Navigation