Skip to main content
Log in

Resorbable screw and sheath versus resorbable interference screw and staples for ACL reconstruction: a comparison of two tibial fixation methods

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The anterior cruciate ligament (ACL) reconstruction is one of the most performed and successful orthopaedic procedures. The results are considered independent by the choice of the graft and the fixation devices. A growing interest on resorbable non-metallic fixation devices versus standard metallic fixation devices has been noted over recent years with few clinical experiences reported in the literature. The aim of this study is to compare the clinical and radiological outcomes of patients undergoing ACL reconstruction using autologous hamstring tendons with tibial fixation by a centrally placed resorbable screw and sheath to a combination of an eccentrically placed resorbable interference screw and supplementary staple fixation.

Methods

Ninety patients undergoing an isolated, single-bundle, primary ACL reconstruction with autologous hamstring tendons, using the same femoral fixation, were randomized to a tibial fixation with a centrally placed resorbable screw and sheath, BioIntrafix (group A), or an eccentrically placed resorbable interference screw, BioRCI, and two non-resorbable staples (group B). The latter has represented for many years our standard fixation method. Clinical evaluations (KOOS, IKDC, KT-2000™ side-to-side difference) and radiological analyses were conducted in both groups with a minimum follow-up of 2 years.

Results

We assisted in a satisfactory pain relief and functional improvements, without significant clinical and radiological differences in both groups. No further surgery was needed in patients with the screw/sheath tibial fixation. Seven patients with the screw/staples tibial fixation needed the surgical removal of the fixation devices due to pes anserinus irritation or local infection years after the index operation. Other parameters such as the tunnel enlargement were not statistically different in the two groups.

Conclusions

Good clinical and radiological outcomes of ACL reconstruction by a screw/sheath tibial fixation have been reported showing comparable results with respect to screw/staples fixation. There were no failures associated with loss of fixation with either of tibial fixation methods. A fewer number of surgical removals of tibial devices were also recorded in patients treated by the screw/sheath fixation system, related to the absence of local intolerance or infection compared to subjects with a standard tibial fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aga C, Rasmussen MT, Smith SD, Jansson KS, LaPrade RF, Engebretsen L, Wijdicks CA (2013) Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 41:841–848

    Article  PubMed  Google Scholar 

  2. Bourke HE, Salmon LJ, Waller A, Winalski CS, Williams HA, Linklater JM, Vasanji A, Roe JP, Pinczewski LA (2013) Randomized controlled trial of osteoconductive fixation screws for anterior cruciate ligament reconstruction: a comparison of the Calaxo and Milagro screws. Arthroscopy 29:74–82

    Article  PubMed  Google Scholar 

  3. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    Article  PubMed  Google Scholar 

  4. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    Article  PubMed  Google Scholar 

  5. Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    Article  CAS  PubMed  Google Scholar 

  6. Bunchner M, Schmeer T, Schmitt H (2007) Anterior cruciate ligament reconstruction with quadrupled semitendinosus tendon—minimum 6 year clinical and radiological follow-up. Knee 14:321–327

    Article  Google Scholar 

  7. Caborn DN, Brand J, Nyland J, Kocabey Y (2004) A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw. Am J Sports Med 32:956–961

    Article  PubMed  Google Scholar 

  8. Chalmers PN, Mall NA, Moric M, Sherman SL, Paletta GP, Cole BJ, Bach BR Jr (2014) Does ACL reconstruction alter natural history? A systematic literature review of long-term outcomes. J Bone Joint Surg Am 96:292–300

    Article  PubMed  Google Scholar 

  9. Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A (2013) An international survey on anterior cruciate ligament reconstruction practices. Int Orthop 37:201–206

    Article  PubMed  Google Scholar 

  10. Chizari M, Snow M, Wang B (2009) Post-operative analysis of ACL tibial fixation. Knee Surg Sports Traumatol Arthrosc 17(7):730–736

    Article  PubMed  Google Scholar 

  11. Choi NH, Yoo SY, Victoroff BN (2013) Tibial tunnel widening after hamstring anterior cruciate ligament reconstructions: comparison between Rigidfix and Bio-TransFix. Knee 20:31–35

    Article  PubMed  Google Scholar 

  12. Crawford SN, Waterman MB, Lubowitz JH (2013) Long-term failure of anterior cruciate ligament reconstruction. Arthroscopy 29:1566–1571

    Article  PubMed  Google Scholar 

  13. Dave LY, Leong OK, Karim SA, Chong CH (2013) Tunnel enlargement 5 years after anterior cruciate ligament reconstruction: a radiographic and functional evaluation. Eur J Orthop Surg Traumatol 24:217–223

    Article  PubMed  Google Scholar 

  14. De Wall M, Scholes CJ, Patel S, Coolican MR, Parker DA (2011) Tibial fixation in anterior cruciate ligament reconstruction: a prospective randomized study comparing metal interference screw and staples with a centrally placed polyethylene screw and sheath. Am J Sports Med 39(9):1858–1864

    Article  PubMed  Google Scholar 

  15. Ettinger M, Schumacher D, Calliess T, Dratzidis A, Ezechieli M, Hurschler C, Becher C (2014) The biomechanics of biodegradable versus titanium interference screw fixation for anterior cruciate ligament augmentation and reconstruction. Int Orthop 38:2499–2503

    Article  PubMed  Google Scholar 

  16. Ferretti A, Monaco E, Giannetti S, Caperna L, Luzon D, Conteduca F (2011) A medium to long-term follow-up of ACL reconstruction using double gracilis and semitendinosus grafts. Knee Surg Sports Traumatol Arthrosc 19:473–478

    Article  PubMed  Google Scholar 

  17. Foldager C, Jakobsen BW, Lund B, Christiansen SE, Kashi L, Mikkelsen LR, Lind M (2010) Tibial tunnel widening after bioresorbable poly-lactide calcium carbonate interference screw usage in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):79–84

    Article  PubMed  Google Scholar 

  18. Gwynne-Jones DP, Draffin J, Vane AG, Craig RA, McMahon SF (2008) Failure strengths of concentric and eccentric implants for hamstring graft fixation. ANZ J Surg 78:177–181

    Article  PubMed  Google Scholar 

  19. Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 87:593–603

    Article  CAS  PubMed  Google Scholar 

  20. Hegde AS, Rai DK, Kannampilli AJ (2014) A comparison of functional outcomes after metallic and bioabsorbable interference screw fixations in arthroscopic acl reconstructions. J Clin Diagn Res 8:LC01-03

    Google Scholar 

  21. Hill PF, Russell VJ, Salmon LJ, Pinczewski LA (2005) The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med 33:94–101

    Article  PubMed  Google Scholar 

  22. Iorio R, Vadalà A, Argento G, Di Sanzo V, Ferretti A (2007) Bone tunnel enlargement after ACL reconstruction using autologous hamstring tendons: a CT study. Int Orthop 31:49–55

    Article  PubMed  Google Scholar 

  23. Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28:392–399

    Google Scholar 

  24. Kousa P, Järvinen TL, Pohjonen T, Kannus P, Kotikoski M, Järvinen M (1995) Fixation strength of a biodegradable screw in anterior cruciate ligament reconstruction. J Bone Joint Surg Br 77:901–905

    CAS  PubMed  Google Scholar 

  25. Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31:174–181

    PubMed  Google Scholar 

  26. Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  27. Laupattarakasem P, Laopaiboon M, Kosuwon W, Laupattarakasem W (2014) Meta-analysis comparing bioabsorbable versus metal interference screw for adverse and clinical outcomes inanterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:142–153

    Article  PubMed  Google Scholar 

  28. L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238

    Article  PubMed  Google Scholar 

  29. Lubowitz JH, Appleby D (2011) Cost-effectiveness analysis of the most common orthopaedic surgery procedures: knee arthroscopy and knee anterior cruciate ligament reconstruction. Arthroscopy 27:1317–1322

    Article  PubMed  Google Scholar 

  30. Laxdal G, Kartus J, Eriksson BI, Faxen E, Sernert N, Karlsson J (2006) Biodegradable and metallic interference screws in anterior cruciate ligament reconstruction surgery using hamstring tendon grafts: prospective randomized stusy of radiographic results and clinical outcome. Am J Sports Med 34(10):1574–1580

    Article  PubMed  Google Scholar 

  31. Lieber RL (1990) Statistical significance and statistical power in hypothesis-testing. J Orthop Res 8:304–309

    Article  CAS  PubMed  Google Scholar 

  32. Malek MM, DeLuca JV, Verch DL, Kunkle KL (1996) Arthroscopically assisted ACL reconstruction using central third patellar tendon autograft with press fit femoral fixation. Instr Course Lect 45:287–295

    CAS  PubMed  Google Scholar 

  33. Mermerkaya MU, Atay OA, Kaymaz B, Bekmez S, Karaaslan F, Doral MN (2015) Anterior cruciate ligament reconstruction using a hamstring graft: a retrospective comparison of tunnel widening upon use of two different femoral fixation methods. Knee Surg Sports Traumatol Arthrosc 23:2283–2291

    Article  PubMed  Google Scholar 

  34. Moisala AS, Järvelä T, Paakkala A, Paakkala T, Kannus P, Järvinen M (2008) Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16(12):1080–1086

    Article  PubMed  Google Scholar 

  35. Ntagiopoulos PG, Demey G, Tavernier T, Dejour D (2015) Comparison of resorption and remodeling of bioabsorbable interference screws in anterior cruciate ligament reconstruction. Int Orthop 39:697–706

    Article  PubMed  Google Scholar 

  36. Papalia R, Vasta S, D’Adamio S, Giacalone A, Maffulli N, Denaro V (2014) Metallic or bioabsorbable interference screw for graft fixation in anterior cruciate ligament (ACL) reconstruction? Br Med Bull 109:19–29

    Article  PubMed  Google Scholar 

  37. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574

    Article  PubMed  Google Scholar 

  38. Quatman CE, Paterno MV, Wordeman SC, Kaeding CC (2011) Longitudinal anterior knee laxity related to substantial tibial tunnel enlargement after anterior cruciate ligament revision. Arthroscopy 27:1160–1163

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS) - development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  40. Smith KE, Garcia M, McAnuff K, Lamell R, Yakacki CM, Griffis J, Higgs GB, Gall K (2012) Anterior cruciate ligament fixation: is radial force a predictor of the pullout strength of soft-tissue interference devices? Knee 19:786–792

    Article  PubMed  Google Scholar 

  41. Tetsumura S, Fujita A, Nakajima M, Abe M (2006) Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci 11:278–282

    Article  PubMed  Google Scholar 

  42. Vuori I, Heinonen A, Sievänen H, Kannus P, Pasanen M, Oja P (1994) Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif Tissue Int 55:59–67

    Article  CAS  PubMed  Google Scholar 

  43. Webster KE, Feller JA, Elliot J, Hutchison A, Payne R (2004) A comparison of bone tunnel measurements made using computed tomography and digital plain radiography after anterior cruciate ligament reconstruction. Arthroscopy 20(9):946–950

    Article  PubMed  Google Scholar 

  44. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22(2):100–110

    Article  PubMed  Google Scholar 

  45. Xie X, Xiao Z, Li Q, Zhu B, Chen J, Chen H, Yang F, Chen Y, Lai Q, Liu X (2015) Increased incidence of osteoarthritis of knee joint after ACL reconstruction with bone-patellar tendon-bone autografts than hamstring autografts: a meta-analysis of 1,443 patients at a minimum of 5 years. Eur J OrthopSurg Traumatol 25:149–159

    Article  Google Scholar 

  46. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-D, L-lactide, and poly-D, L-lactide-tricalcium phosphate screws. Arthroscopy 22:1204–1210

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Marco Biondi,MD and Nicola Monteleone,MD for their precious contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Carulli.

Ethics declarations

Ethical standards

The authors’ Institutional Review Board approved the study and follow-up, respecting the criteria of the Declaration of Helsinki; all subjects accepted the proposed treatment and follow-up after an adequate information and consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carulli, C., Matassi, F., Soderi, S. et al. Resorbable screw and sheath versus resorbable interference screw and staples for ACL reconstruction: a comparison of two tibial fixation methods. Knee Surg Sports Traumatol Arthrosc 25, 1264–1271 (2017). https://doi.org/10.1007/s00167-016-4135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4135-9

Keywords

Navigation