Skip to main content
Log in

An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Various knee anatomic imaging factors have been historically associated with lateral patellar dislocation. The characterization of these anatomic factors in a primary lateral patellar dislocation population has not been well described. Our purpose was to characterize the spectrum of anatomic factors from slice imaging measurements specific to a population of primary lateral patellar dislocation. A secondary purpose was to stratify these data by sex/skeletal maturity to better detail potential dimorphic characteristics.

Methods

Patients with a history of primary lateral patellar dislocation between 2008 and 2012 were prospectively identified. Ten MRI measurements were analysed with results stratified by sex/skeletal maturity. A ‘4-factor’ analysis was performed to detail the number of ‘excessive’ anatomic factors within a single individual.

Results

This study involved 157 knees (79 M/78 F), and 107 patients were skeletally mature. The measurements demonstrate more anatomic risk factors in this population than historical controls. Patella height and trochlear measurements are the most common ‘dysplastic’ anatomic factors in this population. There were differences based on sex for some patellar height measurements and for TT-TG; there were no differences based on skeletal maturity.

Conclusion

Primary lateral patellar dislocation patients have MRI measurements of knee anatomic factors that are generally more dysplastic than the normal population; however, there is a broad spectrum of anatomic features with no pattern predominating. Characterizing knee anatomic imaging factors in the patient with a primary lateral patellar dislocation is a necessary first step in characterizing the (potential) differences between the primary and recurrent patellar dislocation patient.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

This figure is generously provided by the authors as property of the University of Minnesota

Fig. 2

This figure is generously provided by the authors as property of the University of Minnesota

Fig. 3

This figure is generously provided by the authors as property of the University of Minnesota

Fig. 4

This figure is generously provided by the authors as property of the University of Minnesota

Fig. 5

This figure is generously provided by the authors as property of the University of Minnesota

Similar content being viewed by others

References

  1. Ali SA, Helmer R, Terk MR (2009) Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol 193:1361–1366

    Article  PubMed  Google Scholar 

  2. Atkin DM, Fithian DC, Marangi KS, Stone ML, Dobson BE, Mendelsohn C (2000) Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med 28:472–479

    Article  CAS  PubMed  Google Scholar 

  3. Bahr R, Holme I (2003) Risk factors for sports injuries–a methodological approach. Br J Sports Med 37:384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balcarek P, Ammon J, Frosch S, Walde TA, Schuttrumpf JP, Ferlemann KG, Lill H, Sturmer KM, Frosch KH (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 26:926–935

    Article  PubMed  Google Scholar 

  5. Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schuttrumpf JP, Sturmer KM, Frosch KH (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327

    Article  PubMed  Google Scholar 

  6. Biedert RM, Albrecht S (2006) The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 14:707–712

    Article  PubMed  Google Scholar 

  7. Biedert RM, Bachmann M (2009) Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 17:1225–1230

    Article  PubMed  Google Scholar 

  8. Blumensaat C (1938) Die lageabweichungen and verrenkungen der kniescheibe. Ergeb Chir Orthop 31:149–223

    Google Scholar 

  9. Boden BP, Pearsall AW, Garrett WE Jr, Feagin JA Jr (1997) Patellofemoral instability: evaluation and management. J Am Acad Orthop Surg 5:47–57

    Article  CAS  PubMed  Google Scholar 

  10. Brattström H (1970) Patella alta in non-dislocating knee joints. Acta Orthop Scand 41:578–588

    Article  PubMed  Google Scholar 

  11. Camanho GL, Viegas Ade C, Bitar AC, Demange MK, Hernandez AJ (2009) Conservative versus surgical treatment for repair of the medial patellofemoral ligament in acute dislocations of the patella. Arthroscopy 25:620–625

    Article  PubMed  Google Scholar 

  12. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 216:582–585

    Article  CAS  PubMed  Google Scholar 

  13. Caton J (1989) Method of measuring the height of the patella. Acta Orthop Belg 55:385–386

    CAS  PubMed  Google Scholar 

  14. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317–325

    CAS  PubMed  Google Scholar 

  15. Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R (2013) Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med 41:374–384

    Article  PubMed  Google Scholar 

  16. Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO (2010) Return-to-play in sport: a decision-based model. Clin J Sport Med 20:379–385

    Article  PubMed  Google Scholar 

  17. Dejour D, Ferrua P, Ntagiopoulos PG, Radier C, Hulet C, Remy F, Chouteau J, Chotel F, Boisrenoult P, Sebilo A, Guilbert S, Bertin D, Ehkirch FP, Chassaing V (2013) The introduction of a new MRI index to evaluate sagittal patellofemoral engagement. Orthop Traumatol Surg Res 99:S391–S398

    Article  CAS  PubMed  Google Scholar 

  18. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  PubMed  Google Scholar 

  19. Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G (2014) Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am 96:318–324

    Article  PubMed  Google Scholar 

  20. Diederichs G, Issever AS, Scheffler S (2010) MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 30:961–981

    Article  PubMed  Google Scholar 

  21. Escala JS, Mellado JM, Olona M, Gine J, Sauri A, Neyret P (2006) Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc 14:264–272

    Article  PubMed  Google Scholar 

  22. Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, White LM (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32:1114–1121

    Article  PubMed  Google Scholar 

  23. Fox AJ, Wanivenhaus F, Rodeo SA (2012) The basic science of the patella: structure, composition, and function. J Knee Surg 25:127–141

    Article  PubMed  Google Scholar 

  24. Garth WP Jr, Pomphrey M Jr, Merrill K (1996) Functional treatment of patellar dislocation in an athletic population. Am J Sports Med 24:785–791

    Article  PubMed  Google Scholar 

  25. Geenen E, Molenaers G, Martens M (1989) Patella alta in patellofemoral instability. Acta Orthop Belg 55:387–393

    CAS  PubMed  Google Scholar 

  26. Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results (author’s transl). Rev Chir Orthop Repar Appar Mot 64:423–428

    CAS  Google Scholar 

  27. Grelsamer RP, Dejour D, Gould J (2008) The pathophysiology of patellofemoral arthritis. Orthop Clin North Am 39:269–274

    Article  PubMed  Google Scholar 

  28. Hennrikus W, Pylawka T (2013) Patellofemoral instability in skeletally immature athletes. J Bone Joint Surg Am 95:176–183

    Article  PubMed  Google Scholar 

  29. Hinckel BB, Gobbi RG, Kihara Filho EN, Demange MK, Pecora JR, Camanho GL (2015) Patellar tendon-trochlear groove angle measurement: a new method for patellofemoral rotational analyses. Orthop J Sports Med 3:2325967115601031

    Article  PubMed  PubMed Central  Google Scholar 

  30. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104

    Article  CAS  PubMed  Google Scholar 

  31. Koh JL, Stewart C (2014) Patellar instability. Clin Sports Med 33:461–476

    Article  PubMed  Google Scholar 

  32. Lancourt JE, Cristini JA (1975) Patella alta and patella infera. Their etiological role in patellar dislocation, chondromalacia, and apophysitis of the tibial tubercle. J Bone Joint Surg Am 57:1112–1115

    Article  CAS  PubMed  Google Scholar 

  33. Maenpaa H, Huhtala H, Lehto MU (1997) Recurrence after patellar dislocation. Redislocation in 37/75 patients followed for 6-24 years. Acta Orthop Scand 68:424–426

    Article  CAS  PubMed  Google Scholar 

  34. Maldague B, Malghem J (1985) Significance of the radiograph of the knee profile in the detection of patellar instability. Preliminary report. Rev Chir Orthop Repar Appar Mot 71(Suppl 2):5–13

    Google Scholar 

  35. Mehl J, Feucht MJ, Bode G, Dovi-Akue D, Sudkamp NP, Niemeyer P (2016) Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Sports Traumatol Arthrosc 24:838–846

    Article  PubMed  Google Scholar 

  36. Nelitz M, Lippacher S, Reichel H, Dornacher D (2014) Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 22:120–127

    Article  CAS  PubMed  Google Scholar 

  37. Nelitz M, Theile M, Dornacher D, Wolfle J, Reichel H, Lippacher S (2012) Analysis of failed surgery for patellar instability in children with open growth plates. Knee Surg Sports Traumatol Arthrosc 20:822–828

    Article  PubMed  Google Scholar 

  38. Nicolaas L, Tigchelaar S, Koeter S (2011) Patellofemoral evaluation with magnetic resonance imaging in 51 knees of asymptomatic subjects. Knee Surg Sports Traumatol Arthrosc 19:1735–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P (2011) Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 19:663–670

    Article  PubMed  Google Scholar 

  40. Pennock AT, Alam M, Bastrom T (2014) Variation in tibial tubercle-trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med 42:389–393

    Article  PubMed  Google Scholar 

  41. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864

    Article  CAS  PubMed  Google Scholar 

  42. Phillips CL, Silver DA, Schranz PJ, Mandalia V (2010) The measurement of patellar height: a review of the methods of imaging. J Bone Joint Surg Br 92:1045–1053

    Article  CAS  PubMed  Google Scholar 

  43. Richerand A, Chapter XV (1805) Of fractures of the patella. In: The first American (ed) The lectures of Boyer upon diseases of the bones. James Humphreys, Philadelphia, pp 129–142

    Google Scholar 

  44. Saggin PR, Saggin JI, Dejour D (2012) Imaging in patellofemoral instability: an abnormality-based approach. Sports Med Arthrosc 20:145–151

    Article  PubMed  Google Scholar 

  45. Sillanpaa P, Mattila VM, Iivonen T, Visuri T, Pihlajamaki H (2008) Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc 40:606–611

    Article  PubMed  Google Scholar 

  46. Stefancin JJ, Parker RD (2007) First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res 455:93–101

    Article  PubMed  Google Scholar 

  47. Tompkins MA, Arendt EA (2015) Patellar instability factors in isolated medial patellofemoral ligament reconstructions-what does the literature tell us? A systematic review. Am J Sports Med 43:2318–2327

    Article  PubMed  Google Scholar 

  48. Walch G, Dejour H (1989) Radiology in femoro-patellar pathology (in French). Acta Orthop Belg 55:371–380

    CAS  PubMed  Google Scholar 

  49. Weber-Spickschen TS, Spang J, Kohn L, Imhoff AB, Schottle PB (2011) The relationship between trochlear dysplasia and medial patellofemoral ligament rupture location after patellar dislocation: an MRI evaluation. Knee 18:185–188

    Article  CAS  PubMed  Google Scholar 

  50. Yin L, Chen C, Duan X, Deng B, Xiong R, Wang F, Yang L (2015) Influence of the image levels of distal femur on the measurement of tibial tubercle-trochlear groove distance-a comparative study. J Orthop Surg Res 10:174

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zaidi A, Babyn P, Astori I, White L, Doria A, Cole W (2006) MRI of traumatic patellar dislocation in children. Pediatr Radiol 36:1163–1170

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Arendt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, E.A., England, K., Agel, J. et al. An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc 25, 3099–3107 (2017). https://doi.org/10.1007/s00167-016-4117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4117-y

Keywords

Navigation