Skip to main content
Log in

Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Evaluating pivot shift phenomenon is difficult due to its subjectivity, wide variation of testing manoeuvres, and difficulty in evaluating patients while awake. The purpose of this study was to evaluate the pivot shift phenomenon using a triaxial accelerometer by two different manoeuvres, the pivot shift test as representative of flexion manoeuvre and N test as a representative of extension manoeuvre, and in two different conditions, awake and under anaesthesia.

Methods

Twenty-nine patients with unilateral anterior cruciate ligament (ACL)-injured knee were included. Pivot shift test and N test were performed for both injured and uninjured legs while awake and under anaesthesia, with the acceleration measurements using a triaxial accelerometer (KiRA). The tests were also subjectively graded on a scale of 0–6 based on the modification of IKDC criteria.

Results

Under anaesthesia, acceleration of ACL-injured knees was greater than that of uninjured knees in both pivot shift test (P < 0.001) and N test (P < 0.001) , whereas the acceleration value was greater in the N test. Furthermore, there were significant positive correlations between the acceleration and subjective grading in both tests, whereas the N test was more significant than the pivot shift test. On the other hand, there was no statistical significance in acceleration between ACL-injured and uninjured knees in either test while the patient was awake.

Conclusion

The triaxial accelerometer was useful to objectively detect and quantitatively evaluate the pivot shift phenomenon by both the pivot shift test and N test under anaesthesia. The acceleration of ACL-injured knees was greater than that of uninjured knees, and the acceleration was correlated with the subjective manual grading, especially in the N test. On the other hand, its use while the patient was awake was likely limited.

Levels of evidence

Diagnostic study of non-consecutive patients without a universally applied gold standard, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asai S, Maeyama A, Hoshino Y et al (2014) A comparison of dynamic rotational knee instability between anatomic single-bundle and over-the-top anterior cruciate ligament reconstruction using triaxial accelerometry. Knee Surg Sports Traumatol Arthrosc 22:972–978

    Article  PubMed  Google Scholar 

  2. Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36:267–288

    Article  PubMed  Google Scholar 

  3. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc 21:981–985

    Article  CAS  PubMed  Google Scholar 

  4. Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42

    Article  PubMed  Google Scholar 

  5. Borgstrom PH, Markolf KL, Foster B, Petrigliano FA, McAllister DR (2014) Use of a gyroscope sensor to quantify tibial motions during a pivot shift test. Knee Surg Sports Traumatol Arthrosc 22:2064–2069

    Article  PubMed  Google Scholar 

  6. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  7. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    Article  CAS  PubMed  Google Scholar 

  8. Debandi A, Maeyama A, Hoshino Y et al (2013) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sports Traumatol Arthrosc 21:589–595

    Article  PubMed  Google Scholar 

  9. Donaldson WF 3rd, Warren RF, Wickiewicz T (1985) A comparison of acute anterior cruciate ligament examinations. Initial versus examination under anesthesia. Am J Sports Med 13:5–10

    Article  PubMed  Google Scholar 

  10. Espregueira-Mendes J, Pereira H, Sevivas N et al (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678

    Article  PubMed  Google Scholar 

  11. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  PubMed  Google Scholar 

  12. Hoshino Y, Araujo P, Ahlden M et al (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc 20:732–736

    Article  PubMed  Google Scholar 

  13. Hoshino Y, Araujo P, Ahlden M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21:975–980

    Article  PubMed  Google Scholar 

  14. Hoshino Y, Kuroda R, Nagamune K et al (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104

    Article  PubMed  Google Scholar 

  15. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25:488–495

    Article  PubMed  Google Scholar 

  16. Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299

    CAS  PubMed  Google Scholar 

  17. Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599

    Article  PubMed  Google Scholar 

  18. Kitamura N, Yokota M, Kondo E, Miyatake S, Nagamune K, Yasuda K (2013) Biomechanical characteristics of 3 pivot-shift maneuvers for the anterior cruciate ligament-deficient knee: in vivo evaluation with an electromagnetic sensor system. Am J Sports Med 41:2500–2506

    Article  PubMed  Google Scholar 

  19. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    Article  PubMed  Google Scholar 

  20. Koga H, Muneta T, Yagishita K et al (2013) Effect of posterolateral bundle graft fixation angles on graft tension curves and load sharing in double-bundle anterior cruciate ligament reconstruction using a transtibial drilling technique. Arthroscopy 29:529–538

    Article  PubMed  Google Scholar 

  21. Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) The effect of graft fixation angles on anteroposterior and rotational knee laxity in double-bundle anterior cruciate ligament reconstruction: evaluation using computerized navigation. Am J Sports Med 40:615–623

    Article  PubMed  Google Scholar 

  22. Koga H, Muneta T, Yagishita K et al (2014) Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2811–2820

    Article  PubMed  Google Scholar 

  23. Kuroda R, Hoshino Y, Araki D et al (2012) Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc 20:686–691

    Article  PubMed  Google Scholar 

  24. Kuroda R, Hoshino Y, Kubo S et al (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40:91–99

    Article  PubMed  Google Scholar 

  25. Leblanc MC, Kowalczuk M, Andruszkiewicz N et al (2015) Diagnostic accuracy of physical examination for anterior knee instability: a systematic review. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3563-2

    Google Scholar 

  26. Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236

    Article  Google Scholar 

  27. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20:713–717

    Article  PubMed  Google Scholar 

  28. Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21:767–783

    Article  PubMed  Google Scholar 

  29. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169

    PubMed  Google Scholar 

  30. Lopomo N, Zaffagnini S, Signorelli C et al (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Eng 15:1323–1328

    Article  Google Scholar 

  31. Nakajima H, Kondo M, Kurosawa H, Fukubayashi T (1979) Insufficiency of the anterior cruciate ligament. Review of our 118 cases. Arch Orthop Trauma Surg 95:233–240

    Article  CAS  PubMed  Google Scholar 

  32. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155

    Article  CAS  PubMed  Google Scholar 

  33. Robinson J, Carrat L, Granchi C, Colombet P (2007) Influence of anterior cruciate ligament bundles on knee kinematics: clinical assessment using computer-assisted navigation. Am J Sports Med 35:2006–2013

    Article  PubMed  Google Scholar 

  34. Tashiro Y, Okazaki K, Miura H et al (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Koga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, K., Koga, H., Sekiya, I. et al. Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer. Knee Surg Sports Traumatol Arthrosc 25, 2377–2383 (2017). https://doi.org/10.1007/s00167-015-3740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3740-3

Keywords

Navigation