Skip to main content

Advertisement

Log in

Biomechanical evaluation of suture–tendon interface and tissue holding of three suture configurations in torn and degenerated versus intact human rotator cuffs

  • Shoulder
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to biomechanically evaluate suture–tendon interface and tissue holding of three sutures in torn and degenerated versus intact human rotator cuffs.

Methods

Sixty-three human rotator cuff tendons were divided into torn degenerated group (TDG), n = 21 and intact group (IG), n = 42. Ultimate tension load (UTL) and cyclic loading were tested for three arthroscopic sutures: simple, horizontal, and massive cuff sutures (MCS).

Results

Ultimate tension load was significantly higher (p < 0.05) for the MCS (194 ± 68 N) in comparison with the simple (105 ± 48 N) and horizontal sutures (141 ± 49 N) in IG. In TDG, UTL was not significantly higher (n.s.) for MCS (118 ± 49 N), simple (79 ± 30 N), and horizontal sutures (107 ± 28 N) in comparison with IG. MCS (118 ± 49 N) showed no significantly superior UTL in comparison with the simple and horizontal sutures in the TDG. MCA elongation was 0.6 ± 0.7 mm in the IG and 1.3 ± 0.7 mm in the TDG, while horizontal suture elongation was 0.7 ± 0.4 mm in the IG and 1.3 ± 0.5 mm in the TDG. Simple suture elongation was 1.1 ± 0.5 mm in the IG and 1.6 ± 0.7 mm in the TDG.

Conclusion

Human torn and degenerated rotator cuffs have poor tissue quality, significantly lower UTL and higher cyclic elongation in comparison with intact cuffs regardless of the type of suture used for repair, which invites the need for repair techniques that grasps greater tissue volume in addition to augmentation techniques.

Clinical relevance

Clinicians better use repair techniques that grasp greater tissue volume (e.g. MCS, modified Mason–Allen cross bridge, double-row cross bridge, etc.) when repairing the torn and degenerated rotator cuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Accousti KJ, Flatow EL (2007) Technical pearls on how to maximize healing of the rotator cuff. Instr Course Lect 56:1–10

    Google Scholar 

  2. Barber FA, Coons DA, Ruiz-Suarez M (2007) Cyclic load testing of biodegradable suture anchors containing 2 high-strength sutures. Arthroscopy 23:355–360

    Article  PubMed  Google Scholar 

  3. Bardana DD, Burks RT, West JR, Greis PE (2003) The effect of suture anchor design and orientation on suture abrasion: an in vitro study. Arthroscopy 19:274–281

    Article  PubMed  Google Scholar 

  4. Bynum CK, Lee S, Mahar A, Tasto J, Pedowitz R (2005) Failure mode of suture anchors as a function of insertion depth. Am J Sports Med 33:1030–1034

    Article  PubMed  Google Scholar 

  5. Chahal J, Van Thiel GS, Mall N, Heard W, Bach BR, Cole BJ, Nicholson GP, Verma NN, Whelan DB, Romeo AA (2012) The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy 28(11):1718–1727

    Article  PubMed  Google Scholar 

  6. Cho NS, Lee BG, Rhee YG (2011) Arthroscopic rotator cuff repair using a suture bridge technique: is the repair integrity actually maintained? Am J Sports Med 39(10):2108–2116

    Article  PubMed  Google Scholar 

  7. Cole BJ, ElAttrache NS, Anbari A (2007) Arthroscopic rotator cuff repairs: an anatomic and biomechanical rationale for different suture-anchor repair configurations. Arthroscopy 23:662–669

    Article  PubMed  Google Scholar 

  8. Cole AS, Cordiner-Lawrie S, Carr AJ, Athanasou NA (2001) Localised deposition of amyloid in tears of the rotator cuff. J Bone Joint Surg Br 83(4):561–564

    Article  CAS  PubMed  Google Scholar 

  9. Cummins CA, Murrell GA (2003) Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J Shoulder Elbow Surg 12:128–133

    Article  PubMed  Google Scholar 

  10. DeHaan A, Axelrad T, Kaye E, Silvestri L, Puskas B, Foster T (2012) Does double-row rotator cuff repair improve functional outcome of patients compared with single-row technique? : a systematic review. Am J Sports Med 40:1176–1185

    Article  PubMed  Google Scholar 

  11. Meyer DC, Wieser K, Farshad M, Gerber C (2012) Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am J Sports Med 40:2242–2247

    Article  PubMed  Google Scholar 

  12. Gartsman GM, Khan M, Hammerman SM (1998) Arthroscopic repair of full thickness tears of the rotator cuff. J Bone Joint Surg Am 80:832–840

    CAS  PubMed  Google Scholar 

  13. Gerber C, Schneeberger AG, Perren SM, Nyffeler RW (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290

    CAS  PubMed  Google Scholar 

  14. Gerber C, Schneeberger AG, Beck M, Schlegel U (1994) Mechanical strength of repairs of the rotator cuff. J Bone Joint Surg Br 76:371–380

    CAS  PubMed  Google Scholar 

  15. Gladstone J, Bishop J, Lo I, Flatow E (2007) Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 35:719–728

    Article  PubMed  Google Scholar 

  16. Goutailler D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S (2003) Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture full-thickness tears. J Shoulder Elbow Surg 12:550–554

    Article  Google Scholar 

  17. Habermeyer P, Magosch P, Lichtenberg S (2006) Classification of complete rotator cuff tears according to Bateman. Classifications of rotator cuff. In: Classifications and Scores of the Shoulder, 1st edn. Springer, Berlin-Heidelberg, p 23

  18. Ide J, Maeda S, Takagi K (2005) A comparison of arthroscopic and open rotator cuff repair. Arthroscopy 21(9):1090–1098

    Article  PubMed  Google Scholar 

  19. Jones CK, Savoie FH III (2003) Arthroscopic repair of large and massive rotator cuff tears. Arthroscopy 19:564–571

    Article  PubMed  Google Scholar 

  20. Jo CH, Kim JE, Yoon KS, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Shin S (2011) Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med 39(10):2082–2090

    Article  PubMed  Google Scholar 

  21. Oh JH, Kim SH, Kang JY, Oh CH, Gong HS (2010) Effect of age on functional and structural outcome after rotator cuff repair. Am J Sports Med 38:672–678

    Article  PubMed  Google Scholar 

  22. Kim DH, Elattrache NS, Tibone JE et al (2006) Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair. Am J Sports Med 34:407–414

    Article  CAS  PubMed  Google Scholar 

  23. Lafosse L, Brozska R, Toussaint B, Gobezie R (2007) The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 89(7):1533–1541

    Article  PubMed  Google Scholar 

  24. Lehmann C, Cuomo F, Kummer FJ, Zuckermann JD (1995) The incidence of full thickness rotator cuff tears in a large cadaveric population. Bull Hosp Jt Dis 54(1):30–31

    Google Scholar 

  25. Lee BG, Cho NS, Rhee YG (2012) Modified Mason–Allen suture bridge technique: a new suture bridge technique with improved tissue holding by the modified Mason–Allen stitch. Clin Orthop Surg 4(3):242–245

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lichtenberg S, Liem D, Magosch P, Habermeyer P (2006) Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single-row Mason–Allen suture technique: a prospective, MRI controlled study. Knee Surg Sports Traumatol Arthrosc 14(11):1200–1206

    Article  PubMed  Google Scholar 

  27. Lorbach O, Pape D, Raber F, Busch LC, Kohn D, Kieb M (2012) Influence of the initial rupture size and tendon subregion on three-dimensional biomechanical properties of single-row and double-row rotator cuff reconstructions. Knee Surg Sports Traumatol Arthrosc 20(11):2139–2147

    Article  CAS  PubMed  Google Scholar 

  28. Lorbach O, Kieb M, Raber F, Busch LC, Kohn DM, Pape D (2013) Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation. Am J Sports Med 41(1):153–162

    Article  PubMed  Google Scholar 

  29. Ma CB, Comerford L, Wilson J, Puttlitz CM (2006) Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation. J Bone Joint Surg Am 88:403–410

    Article  PubMed  Google Scholar 

  30. Ma CB, MacGillivray JD, Clabeaux J, Lee S, Otis JC (2004) Biomechanical evaluation of arthroscopic rotator cuff stitches. J Bone Joint Surg Am 86-A(6):1211–1216

    PubMed  Google Scholar 

  31. Mahar A, Allred DW, Wedemeyer M, Abbi G, Pedowitz R (2006) A biomechanical and radiographic analysis of standard and intracortical suture anchors for arthroscopic rotator cuff repair. Arthroscopy 22:130–135

    Article  PubMed  Google Scholar 

  32. Mattews TJ, Hand GD, Rees JL, Athanasou NA, Carr AJ (2006) Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg Br 88(4):489–495

    Article  Google Scholar 

  33. Murray TF Jr, Lajtai G, Mileski RM, Snyder SJ (2002) Arthroscopic repair of medium to large full-thickness rotator cuff tears: outcome at 2- to 6-year follow-up. J Shoulder Elbow Surg 11:19–24

    Article  PubMed  Google Scholar 

  34. Nho SJ, Yadav H, Shindle MK, Macgillivray JD (2008) Rotator cuff degeneration: etiology and pathogenesis. Am J Sports Med 36(5):987–993

    Article  PubMed  Google Scholar 

  35. Ozbaydar M, Chung S, Diller D, Warner JJ (2007) Arthroscopic reconstruction of the rotator cuff: the current gold standard? Der Orthopäde 36(9):825–833

    Article  CAS  PubMed  Google Scholar 

  36. Park MC, Peterson A,Patton J, McGarry MH, Park CJ, Lee TQ (2013) Biomechanical effects of a 2 suture-pass medial inter-implant mattress on transosseous-equivalent rotator cuff repair and considerations for a “technical efficiency ratio” J Shoulder Elbow Surg. doi:10.1016/j.jse.2013.06.019

  37. Rhee YG, Cho NS, Parke CS (2012) Arthroscopic rotator cuff repair using modified Mason–Allen medial row stitch: knotless versus knot-tying suture bridge technique. Am J Sports Med 40(11):2440–2447

    Article  PubMed  Google Scholar 

  38. Chung SW, Oh JH, Gong HS, Kim JY, Kim SH (2011) Factors affecting rotator cuff healing after arthroscopic repair: osteoporosis as one of the independent risk factors. Am J Sports Med 39:2099–2107

    Article  PubMed  Google Scholar 

  39. Sileo MJ, Ruotolo CR, Nelson CO, Serra-Hsu F, Panchal AP (2007) A biomechanical comparison of the modified Mason–Allen stitch and massive cuff stitch in vitro. Arthroscopy 23(3):235–240

    Article  PubMed  Google Scholar 

  40. Smith CD, Alexander S, Hill AM et al (2006) A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair. J Bone Joint Surg Am 88:2425–2431

    Article  PubMed  Google Scholar 

  41. Van Der Meijden OA, Wijdicks CA, Gaskill TR, Jansson KS, Millett PJ (2013) Biomechanical analysis of two-tendon posterosuperior rotator cuff tear repairs: extended linked repairs and augmented repairs. Arthroscopy 29(1):37–45

    Article  PubMed  Google Scholar 

  42. Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD (2013) Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med 41(2):263–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Pathology Institute SMZ-South KH for support and help in obtaining the shoulder specimens, as well as Arthrex for donating the FiberWire® used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Abdelkafy.

Additional information

The current study was performed at Pathology Institute SMZ-South KH and at Orthopaedic Hospital Speising Vienna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wlk, M.V., Abdelkafy, A., Hexel, M. et al. Biomechanical evaluation of suture–tendon interface and tissue holding of three suture configurations in torn and degenerated versus intact human rotator cuffs. Knee Surg Sports Traumatol Arthrosc 23, 386–392 (2015). https://doi.org/10.1007/s00167-014-2988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-2988-3

Keywords

Navigation