Skip to main content
Log in

Interference screws should be shorter than the hamstring tendon graft in the bone tunnel for best fixation

Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Interference screw fixation of hamstring tendon grafts in bone has to overcome the challenges that tendons have a slippery surface and viscoelastically adapt under pressure. As the typical failure mode of the graft is to slip past the interference screw, it was hypothesized that the position and configuration of the graft end may be of influence on the fixation strength.

Methods

Different configurations of the graft ending and its effect to primary fixation with interference screws after viscoelastic adaptation were tested in six groups: I: graft and the screw inserted at the same depth, II/III: the graft overlaps the tip of the screw (interference screw of 28 and 19 mm in length, respectively), IV: strengthening of the graft ending with additional suture knots, V: Endopearl, respectively, and VI: effect of partial retraction of the screw after excessive insertion. In vitro tests were performed with fresh calf tendon grafts and interference screws in bone tunnels (fresh porcine distal femur) all of 8 mm in diameter.

Results

The relative position of the graft ending to the tip of the interference screw thereby was recognized as a significant factor on pullout forces. Further strengthening at the graft endings with additional suture knots or an Endopearl device could improve primary hold as well.

Conclusions

Better fixation strength is achieved if the tip of interference screw does not extend past the end of a tendon graft. Enforcement of the tendon end with sutures or an implant can further improve fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S (2004) Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 32(1):71–78

    Article  PubMed  Google Scholar 

  2. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32(3):635–640

    Article  PubMed  Google Scholar 

  3. Becker R, Voigt D, Starke C, Heymann M, Wilson GA, Nebelung W (2001) Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surg Sports Traumatol Arthrosc 9(6):337–342

    Article  PubMed  CAS  Google Scholar 

  4. Benfield D, Otto DD, Bagnall KM, Raso VJ, Moussa W, Amirfazli A (2005) Stiffness characteristics of hamstring tendon graft fixation methods at the femoral site. Int Orthop 29(1):35–38

    Article  PubMed  CAS  Google Scholar 

  5. Black KP, Saunders MM, Stube KC, Moulton MJ, Jacobs CR (2000) Effects of interference fit screw length on tibial tunnel fixation for anterior cruciate ligament reconstruction. Am J Sports Med 28(6):846–849

    PubMed  CAS  Google Scholar 

  6. Brand JC Jr, Nyland J, Caborn DN, Johnson DL (2005) Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 21(8):911–916

    Article  PubMed  Google Scholar 

  7. Brown CH Jr, Hecker AT, Hipp JA, Myers ER, Hayes WC (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21(6):880–886

    Article  PubMed  Google Scholar 

  8. Chang HC, Nyland J, Nawab A, Burden R, Caborn DN (2005) Biomechanical comparison of the bioabsorbable retroscrew system, bioscrew xtralok with stress equalization tensioner, and 35-mm delta screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 33(7):1057–1064

    Article  PubMed  Google Scholar 

  9. Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12(5):391–397

    Article  PubMed  Google Scholar 

  10. Dargel J, Koebke J, Bruggemann GP, Pennig D, Schmidt-Wiethoff R (2009) Tension degradation of anterior cruciate ligament grafts with dynamic flexion-extension loading: a biomechanical model in porcine knees. Arthroscopy 25(10):1115–1125

    Article  PubMed  Google Scholar 

  11. Debandi A, Maeyama A, Lu S, Hume C, Asai S, Goto B, Hoshino Y, Smolinski P, Fu FH (2011) Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc 19(5):728–735

    Article  PubMed  Google Scholar 

  12. Donahue TL, Gregersen E, Hull ML, Howell SM (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 123(2):162–169

    Article  PubMed  CAS  Google Scholar 

  13. Duffee AR, Brunelli JA, Nyland J, Burden R, Nawab A, Caborn D (2007) Bioabsorbable screw divergence angle, not tunnel preparation method influences soft tissue tendon graft–bone tunnel fixation in healthy bone. Knee Surg Sports Traumatol Arthrosc 15(1):17–25

    Article  PubMed  Google Scholar 

  14. Halewood C, Hirschmann MT, Newman S, Hleihil J, Chaimski G, Amis AA (2011) The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surg Sports Traumatol Arthrosc 19(4):559–567

    Article  PubMed  Google Scholar 

  15. Jarvinen TL, Nurmi JT, Sievanen H (2004) Bone density and insertion torque as predictors of anterior cruciate ligament graft fixation strength. Am J Sports Med 32(6):1421–1429

    Article  PubMed  Google Scholar 

  16. Kleweno CP, Jacir AM, Gardner TR, Ahmad CS, Levine WN (2009) Biomechanical evaluation of anterior cruciate ligament femoral fixation techniques. Am J Sports Med 37(2):339–345

    Article  PubMed  Google Scholar 

  17. Meuffels DE, Docter PT, van Dongen RA, Kleinrensink GJ, Verhaar JA, Reijman M (2010) Stiffer fixation of the tibial double-tunnel anterior cruciate ligament complex versus the single tunnel: a biomechanical study. Arthroscopy 26(9):35–40

    Article  Google Scholar 

  18. Meyer DC, Stalder M, Koch PP, Snedeker JG, Farshad M (2011) Contact pressure on ACL hamstring grafts in the bone tunnel with interference screw fixation—dynamic adaptation under load. Knee. doi:10.1016/j.knee.2011.11.005

    Google Scholar 

  19. Pomeroy G, Baltz M, Pierz K, Nowak M, Post W, Fulkerson JP (1998) The effects of bone plug length and screw diameter on the holding strength of bone-tendon-bone grafts. Arthroscopy 14(2):148–152

    Article  PubMed  CAS  Google Scholar 

  20. Roy S, Fernhout M, Stanley R, McGee M, Carbone T, Field JR, Dobson P (2010) Tibial interference screw fixation in anterior cruciate ligament reconstruction with and without autograft bone augmentation. Arthroscopy 26(7):949–956

    Article  PubMed  Google Scholar 

  21. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18(3):292–299

    Article  PubMed  CAS  Google Scholar 

  22. Shen PH, Lien SB, Shen HC, Wang CC, Huang GS, Chao KH, Lee CH, Lin LC (2009) Comparison of different sizes of bioabsorbable interference screws for anterior cruciate ligament reconstruction using bioabsorbable bead augmentation in a porcine model. Arthroscopy 25(10):1101–1107

    Article  PubMed  Google Scholar 

  23. Stadelmaier DM, Lowe WR, Ilahi OA, Noble PC, Kohl HW 3rd (1999) Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. Am J Sports Med 27(6):778–783

    PubMed  CAS  Google Scholar 

  24. Vergis A, Gillquist J (1995) Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy 11(3):312–321

    Article  PubMed  CAS  Google Scholar 

  25. Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37(1):160–167

    Article  PubMed  Google Scholar 

  26. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Sudkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28(3):356–359

    PubMed  CAS  Google Scholar 

  27. Weiler A, Richter M, Schmidmaier G, Kandziora F, Sudkamp NP (2001) The EndoPearl device increases fixation strength and eliminates construct slippage of hamstring tendon grafts with interference screw fixation. Arthroscopy 17(4):353–359

    Article  PubMed  CAS  Google Scholar 

  28. Weimann A, Rodieck M, Zantop T, Hassenpflug J, Petersen W (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21(3):266–274

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik C. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stalder, M., Farshad, M., Snedeker, J.G. et al. Interference screws should be shorter than the hamstring tendon graft in the bone tunnel for best fixation. Knee Surg Sports Traumatol Arthrosc 21, 584–588 (2013). https://doi.org/10.1007/s00167-012-1957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1957-y

Keywords

Navigation