Skip to main content
Log in

A Compositional Modelling and Verification Framework for Stochastic Hybrid Systems

  • Original Article
  • Published:
Formal Aspects of Computing

Abstract

In this paper, we propose a general compositional approach for modelling and verification of stochastic hybrid systems (SHSs). We extend Hybrid CSP (HCSP), a very expressive process algebra-like formal modeling language for hybrid systems, by introducing probability and stochasticity to model SHSs, which we call stochastic HCSP (SHCSP). Especially, non-deterministic choice is replaced by probabilistic choice, ordinary differential equations are replaced by stochastic differential equations (SDEs), and communication interrupts are generalized by communication interrupts with weights. We extend Hybrid Hoare Logic to specify and reason about SHCSP processes: On the one hand, we introduce the probabilistic formulas for describing probabilistic states, and on the other hand, we propose the notions of local stochastic differential invariants for characterizing SDEs and global loop invariants for repetition. Throughout the paper, we demonstrate our approach by an aircraft running example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman E, Gaitsgory V (1997) Asymptotic optimization of a nonlinear hybrid system governed by a Markov decision process. SIAM J Control Optim 35(6): 2070–2085

    Article  MathSciNet  MATH  Google Scholar 

  2. Abate A, Prandini M, Lygeros J, Sastry S (2008) Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11): 2724–2734

    Article  MathSciNet  MATH  Google Scholar 

  3. Banach R, Butler M, Qin S, Verma N, Zhu H (2015) Core hybrid event-B I: single hybrid event-B machines. Sci Comput Program 105: 92–123

    Article  Google Scholar 

  4. Bujorianu ML, Lygeros J (2006) Toward a general theory of stochastic hybrid systems. In: Lecture notes in control and information sciences (LNCIS), vol 337, pp 3–30

  5. Bujorianu Manuela L, Lygeros John, Bujorianu Marius C (2005) Bisimulation for general stochastic hybrid systems. In: HSCC’05, LNCS, vol 3414, pp 198–214

  6. Bujorianu ML (2004) Extended stochastic hybrid systems and their reachability problem. In: HSCC’04, LNCS, vol 2993, pp 234–249

  7. Chen M, Fränzle M, Li Y, Mosaad PN, Zhan N (2016) Validated simulation-based verification of delayed differential dynamics. In: FM’16, LNCS, vol 9995, pp 137–154

  8. Castelan EB, Hennet JC (1993) On invariant polyhedra of continuous-time linear systems. IEEE Trans Autom Control 38(11): 1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  9. Fränzle M, Hahn EM, Hermanns H, Wolovick N, Zhang L (2011) Measurability and safety verification for stochastic hybrid systems. In: HSCC’11, pp 43–52. ACM

  10. Goubault E, Jourdan J-H, Putot S, Sankaranarayanan S (2014) Finding non-polynomial positive invariants and Lyapunov functions for polynomial systems through Darboux polynomials. In: ACC 2014, pp 3571–3578

  11. Gretz F, Katoen J-P, McIver A (2014) Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Perform Eval 73: 110–132

    Article  Google Scholar 

  12. Gulwani S, Tiwari A (2008) Constraint-based approach for analysis of hybrid systems. In: Gupta A, Malik S (eds) CAV’08, LNCS, vol 5123, pp 190–203. Springer, Berlin

  13. Hartog JI (1999) Verifying probabilistic programs using a hoare like logic. In: ASIAN 1999, LNCS, vol 1742, pp 113–125

  14. He J (1994) From CSP to hybrid systems. In: A classical mind, essays in Honour of C.A.R. Hoare. Prentice Hall International (UK) Ltd, London, pp 171–189

  15. Henzinger TA (July 1996) The theory of hybrid automata. In: LICS’96, pp 278–292

  16. Hahn EM, Hartmanns A, Hermanns H, Katoen J.-P. (2013) A compositional modelling and analysis framework for stochastic hybrid systems. Form Methods Syst Des 43(2): 191–232

    Article  MATH  Google Scholar 

  17. Hahn EM, Hermanns H, Wachter B, Zhang L (2010) PASS: abstraction refinement for infinite probabilistic models. In: TACAS’10, LNCS, vol 6015, pp 353–357

  18. Hu J, Lygeros J, Sastry S (2002) Towards a theory of stochastic hybrid systems. In: HSCC’02, LNCS, vol 1790, pp 160–173

  19. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580

  20. Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs

  21. Kwiatkowska M, Norman G, Parker D, Qu H (2010) Assume-guarantee verification for probabilistic systems. In: TACAS 2010, LNCS, vol 6015, pp 23–37

  22. Liu J, Lv J, Quan Z, Zhan N, Zhao H, Zhou C, Zou L (2010) A calculus for hybrid CSP. In: APLAS’10, LNCS, vol 6461, pp 1–15

  23. Liu J, Zhan N, Zhao H, Zou L (2015) Abstraction of elementary hybrid systems by variable transformation. In: FM 2015, LNCS, vol 9109. Springer International Publishing, pp 360–377

  24. Morgan C, McIver A, Seidel K (1996) Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems, 18(3): 325–353

    Article  Google Scholar 

  25. Morgan C, McIver A, Seidel K, Sanders JW (1996) Refinement-oriented probability for CSP. Form Asp Comput 8(6): 617–647

    Article  MATH  Google Scholar 

  26. Meseguer J, Sharykin R (2006) Specification and analysis of distributed object-based stochastic hybrid systems. In: HSCC’06, LNCS, vol 3927, pp 460–475

  27. Øksendal B (2007) Stochastic differential equations: an introduction with applications. Springer, Berlin

    MATH  Google Scholar 

  28. Platzer A, Clarke EM (2008) Computing differential invariants of hybrid systems as fixedpoints. In: CAV 2008, LNCS, vol 5123, pp 176–189

  29. Prandini M, Hu J (2008) Application of reachability analysis for stochastic hybrid systems to aircraft conflict prediction. In: 47th IEEE conference on decision and control (CDC). IEEE, pp 4036 – 4041

  30. Prajna S, Jadbabaie A, Pappas GJ (2007) A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans Autom Control 52(8): 1415–1428

    Article  MathSciNet  Google Scholar 

  31. Platzer A (2010) Differential-algebraic dynamic logic for differential-algebraic programs. J Log Comput 20(1): 309–352

    Article  MathSciNet  MATH  Google Scholar 

  32. Platzer A (2011) Stochastic differential dynamic logic for stochastic hybrid programs. In: CADE’11, LNCS, vol 6803, pp 446–460

  33. Peng Y, Wang S, Zhan N, Zhang L (2015) Extending hybrid CSP with probability and stochasticity. In: SETTA’15, LNCS, vol 9409, pp 87–102

  34. Rebiha R, Matringe N, Moura AV (2012) Transcendental inductive invariants generation for non-linear differential and hybrid systems. In: HSCC 2012, New York, NY, USA. ACM, pp 25–34

  35. Sankaranarayanan S (2010) Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC’10, New York, NY, USA. ACM, pp 221–230

  36. Sproston J (2000) Decidable model checking of probabilistic hybrid automata. In: Formal techniques in real-time and fault-tolerant systems, LNCS, vol 1926, pp 31–45

  37. Sankaranarayanan S, Sipma HB, Manna Z (2004) Constructing invariants for hybrid systems. In: Alur R, Pappas GJ (eds) HSCC’04, LNCS, vol 2993, pp 539–554

  38. Tang X, Zou X (2008) Global attractivity in a predator-prey system with pure delays. Proc Edinburgh Math Soc 51: 495–508

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang S, Zhan N, Guelev D (2012) An assume/guarantee based compositional calculus for hybrid CSP. In: Agrawal M, Cooper SB, Li A (eds) TAMC 2012, LNCS, vol 7287. Springer, Berlin, pp 72–83

  40. Yang Z, Lin W, Wu M (2015) Exact safety verification of hybrid systems based on bilinear SOS representation. ACM Trans Embed Comput Syst 14(1): 16–11619

    Article  Google Scholar 

  41. Zou L, Fränzle M, Zhan N, Mosaad PN (2015) Automatic verification of stability and safety for delay differential equations. In: CAV’15, LNCS, vol 9207, pp 338–355

  42. Zuliani P, Platzer A, Clarke EM (2013) Bayesian statistical model checking with application to stateflow/simulink verification. Form Methods Syst Des 43(2): 338–367

    Article  MATH  Google Scholar 

  43. Zhang L, She Z, Ratschan S, Hermanns H, Hahn EM (2010) Safety verification for probabilistic hybrid systems. In: CAV’10, LNCS, vol 6174, pp 196–211

  44. Zhou C, Wang J, Ravn AP (1996) A formal description of hybrid systems. In: Hybrid systems III, LNCS, vol 1066, pp 511–530

  45. Zhan N, Wang S, Zhao H (2013) Formal modelling, analysis and verification of hybrid systems. In: Unifying theories of programming and formal engineering methods, LNCS, vol 8050, pp 207–281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuling Wang.

Additional information

Cliff Jones, Xuandong Li, and Zhiming Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhan, N. & Zhang, L. A Compositional Modelling and Verification Framework for Stochastic Hybrid Systems. Form Asp Comp 29, 751–775 (2017). https://doi.org/10.1007/s00165-017-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00165-017-0421-7

Keywords

Navigation