Skip to main content
Log in

Design theory at Bauhaus: teaching “splitting” knowledge

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Recent advances in design theory help clarify the logic, forms and conditions of generativity. In particular, the formal model of forcing predicts that high-level generativity (so-called generic generativity) can only be reached if the knowledge structure meets the ‘splitting condition’. We test this hypothesis for the case of Bauhaus (1919–1933), where we can expect strong generativity and where we have access to the structures of knowledge provided by teaching. We analyse teaching at Bauhaus by focusing on the courses of Itten and Klee. We show that these courses aimed to increase students’ creative design capabilities by providing the students with methods of building a knowledge base with two critical features: (1) a knowledge structure that is characterized by non-determinism and non-modularity and (2) a design process that helps students progressively ‘superimpose’ languages on the object. From the results of the study, we confirm the hypothesis deduced from design theory; we reveal unexpected conditions on the knowledge structure required for generativity and show that the structure is different from the knowledge structure and design process of engineering systematic design and show that the conditions required for generativity, which can appear as a limit on generativity, can also be positively interpreted. The example of Bauhaus shows that enabling a splitting condition is a powerful way to increase designers’ generativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. As suggested by an anonymous reviewer (whom we warmly thank), we provide here complementary references on forcing—these sources explore forcing historically: {Kanamori 2008 #3191; Moore 1988 #3192}; the reader can also refer to {Chow 2009 #3193}. {Dickman 2013 #3194} is a case study of creativity in science applied to the discovery of Forcing.

  2. In forcing theory, one uses interchangeably the terms “forcing constraint” and “forcing condition”. In this paper, we favour the term “forcing constraint” to avoid confusion with the “splitting condition” that will be presented below.

  3. Demonstration (see Jech 2002, exercise 14.6, p. 223): Suppose that G is in M and consider \( D = Q\backslash G \). For any p in Q, the splitting condition implies that there are q and q′ that refine p and are incompatible; one of the two is therefore not in G and thus is in D. Hence, any condition of Q is refined by an element of D. Hence, D is dense. Therefore, G is not generic.

  4. Demonstration (see Jech 2002, p. 203): Let D 1, D 2… be the dense subsets of Q. Let \( p_{0} = p^{*} \), a constraint in Q. For each n, let p n be such that p n  < p n−1 and p n is in D n . The set \( G = \{ q \in P/q > p_{n} \;{\text{for}}\;{\text{some}}\;n \in N\} \) is then a generic filter acting on Q and \( p^{*} \) is in G.

  5. Demonstration: If Q is non-splitting, then there exists p0 such that whatever q and q′ are refining p 0, and there is r such that r < q and r < q′. We show that if p 0 is in G, then G refines all conditions stronger than p 0. We want to show that, whatever q < p 0, there is r in G that refines q. To this end, we introduce D q  = {p in Q/p is not refined by p 0 or p < q}. D q is dense: for every p in Q, either p is not refined by p 0 and it is in D q or p < p 0; we know that q < p 0 and Q is non-splitting, and hence, there is r < p and r < q. D q is therefore dense. G therefore intersects D q . Hence, for every q that refines p 0, there is an r in D q . Moreover, we know that p 0 is in G, and hence, r in D q necessarily refines p 0. Therefore, every constraint stronger than p 0 is refined by a constraint in G. Hence, every constraint stronger than p 0 is in G. Hence, G is determined by p 0. Note that the splitting condition is sufficient but not necessary. A non-splitting knowledge base Q can be used to create a generic filter G not in M, which is a consequence of the theorem above that states that G must “avoid” all p 0 where modularity or determinism begins.

  6. They sponsored lectures, exhibitions (Köln 1914), and publications (Werkbund Jahrbücher), helped found a museum of applied arts and were involved in Dürerbund-Werkbund Genossenschaft (publishing a catalogue of exemplary mass-produced goods 1915), linked to Werkstättenbewegung (Riemerschmid, Naumann). In parallel, they made great efforts to establish a theoretical basis, and Werkbund was a forum for discussion, with a wide cultural, economic, social and political audience.

References

  • Bense M (1956) Aesthetica II. Agis, Baden-Baden

    Google Scholar 

  • Betts P (1998) Science, semiotics and society: the Ulm Hochschule für Gestaltung in retrospect. Des Issues 14(2):67

    Article  MathSciNet  Google Scholar 

  • Blossfeldt K, Nierendorf K (1928) Urformen der Kunst: photographische Pflanzenbilder. Verlag Ernst Wasmuth, A.G., Berlin

    Google Scholar 

  • Boden MA (1999) Computer models of creativity. In: Sternberg RJ (ed) Handbook of creativity. Cambridge University Press, Cambridge, pp 351–372

    Google Scholar 

  • Braha D, Reich Y (2003) Topologial structures for modelling engineering design processes. Res Eng Des 14(4):185–199

    Article  Google Scholar 

  • Brun J, Le Masson P, Weil B (2015) Analyzing the generative effects of sketches with design theory: sketching to foster knowledge reordering. In: International conference on engineering design, Milan, 2015. p Reviewers’favorite award ICED’15

  • Campbell J (1978) The German Werkbund. The politics of reform in the applied arts. Princeton University Press, Princeton

    Google Scholar 

  • Chow TY (2009) A beginner's guide to forcing. In: Chow TY, Isaksen DC (eds) Communicating mathematics–a conference in honor of Joseph A. Gallian’s 65th Birthday. American Mathematical Society, Providence, pp 25–40

  • Cohen PJ (1966) Set theory and the continuum hypothesis. Addison-Wesley, Menlo Park

    MATH  Google Scholar 

  • Cohen P (2002) The discovery of forcing. Rocky Mt J Math 32(4):1071–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Dehornoy P (2010) Théorie axiomatique des ensembles. In: Encyclopeadia Universalis. Paris, p 20

  • Dickman B (2013) Mathematical creativity, Cohen forcing, and evolving systems: elements for a case study on Paul Cohen. J Math Educ Teach Coll 4(2):50–59

  • Dorst K, Vermaas PE (2005) John Gero’s function-behaviour-structure model of designing: a critical analysis. Res Eng Des 16(1–2):17–26

    Article  Google Scholar 

  • Dow AW (1920) Composition: a series of exercises in art structure for the use of students and teachers. DOubleday, Page & Company, Garden City

    Google Scholar 

  • Droste M (2002) Bauhaus 1919–1933. Taschen, Köln

    Google Scholar 

  • Engler F, Lichtenstein C (1990) Streamlined, a metaphor for progress, the esthetics of minimized drag. Lars Müller Publisherse, Baden

    Google Scholar 

  • Findeneisen F (1950) Neuzeitliche Maschinenelemente. Schweizer Druck-und Verlaghaus AG, Zürich

    Google Scholar 

  • Forty A (1986) Objects of desire. 2ème édition, première édition en 1986 edn. Thames & Hudson, London

  • Friedewald B (2011) Paul Klee, life and work. Prestel, Munich

    Google Scholar 

  • Froissart-Pezone R (2004) L’Ecole à la recherche d’une identité entre art et industrie (1877–1914). In: Raynaud P (ed) Histoire de l’Ecole nationale supérieure des arts décoratfs 1ère partie (1766–1941). Edition spéciale du Journal de l’Ensad, Paris, pp 108–147

  • Gardner H (1936) Art through the ages—an introduction to its history and significance, 2nd edn. Harcourt, Brace and Company, New York

    Google Scholar 

  • Gropius W (1923) The theory and organization of the Bauhaus

  • Gropius W (1925) Neue Bauhauswerkstätten

  • Guilford JP (1950) Creativity. Am Psychol 3:444–454

    Article  Google Scholar 

  • Hadamard J (1945) The psychology of invention in the mathematical field. Princeton University Press, New York, p 145

    MATH  Google Scholar 

  • Hatchuel A, Weil B (2009) C–K design theory: an advanced formulation. Res Eng Des 19(4):181–192

    Article  Google Scholar 

  • Hatchuel A, Le Masson P, Reich Y, Weil B (2011) A systematic approach of design theories using generativeness and robustness. In: International conference on engineering design, ICED’11, Copenhagen, Technical University of Denmark, 2011, p 12

  • Hatchuel A, Weil B, Le Masson P (2013) Towards an ontology of design: lessons from C–K design theory and forcing. Res Eng Des 24(2):147–163

    Article  Google Scholar 

  • Heymann M (2005) “Kunst” und Wissenchsaft in der Technik des 20. Jahrhunderts. Zur Geschichte der Konstruktionswissenschaft. Chronos Verlag, Zürich

    Google Scholar 

  • Hubka V, Eder WE (1988) Theory of technical systems. A total concept theory for engineering design. Springer, Berlin

    Book  Google Scholar 

  • Itten J (1961) The art of color. Wiley, New York

    Google Scholar 

  • Itten J (1975) Design and form, the basic course at the Bauhaus and later. Revised edition (first edition 1963) edn. Wiley, London

  • Jaffee B (2005) Before the new Bauhaus: from industrial drawing to art and design education in Chicago. Des Issues 21(1):41–62

    Article  Google Scholar 

  • Jansson DG, Smith SM (1991) Design fixation. Des Stud 12(1):3–11

    Article  Google Scholar 

  • Jech T (2002) Set theory. Springer monographs in mathematics, 3rd millennium edition, revised and expanded edn. Springer, Berlin

  • Kanamori A (2008) Cohen and Set Theory. Bull Symb Log 14(3):351–378

  • Kandinsky W (1975) Cours du Bauhaus (1929). Traduit de l’allemand d’après des notes manuscrites par Suzanne et Jean Leppien edn. Denoël, Paris

  • Keane W (2003) Semiotics and the social analysis of material things. Lang Commun 23:409–425

    Article  Google Scholar 

  • Kesselring F (1942) Die “starke” Konstruktion, Gedanken zu einer Gestaltungslehre. Zeitschrift des Vereines deutscher Ingenieure 86 (21/22 30. Mai 1942 und 49/50 12. Dez. 1942): pp 321–330 und 749–752

  • Klee P (1922) Beiträge zur bildnerischen Formlehre (‘contribution to a pictorial theory of form’, part of Klee 1921–1922 lectures at the Bauhaus). Weimar

  • Klee P (1966) On modern art. Faber and Faber Limited, London

    Google Scholar 

  • Klee P (2005) Cours du Bauhaus, Weimar 1921–1922. Contributions à la théorie de la forme picturale. Hazan, Paris

    Google Scholar 

  • König W (1999) Künstler und Strichezieher. Konstruktions-und Technikkulturen im deutschen, britischen, amerikanischen und französischen Maschinenbau zwischen 1850 und 1930, vol 1287. Suhrkamp Taschenbuch Wissenschaft. Suhrkamp Verlag, Frankfurt am Main

  • Krippendorff K (1989) On the essential contexts of artifacts or on the proposition that “design is making sense (of things)”. Des Issues 5(2):9–39

    Article  Google Scholar 

  • Kroll E (2013) Design theory and conceptual design: contrasting functional decomposition and morphology with parameter analysis. Res Eng Des 24(2):165–183

    Article  Google Scholar 

  • Kroll E, Le Masson P, Weil B (2014) Steepest-first exploration with learning-based path evaluation: uncovering the design strategy of parameter analysis with C–K theory. Res Eng Des 25:351–373

    Article  Google Scholar 

  • Laudien K (1931) Maschinenelemente. Dr. Max Junecke Verlagsbuchhandlung, Leipzig

    Google Scholar 

  • Le Masson P, Weil B (2013) Design theories as languages for the unknown: insights from the German roots of systematic design (1840–1960). Res Eng Des 24(2):105–126

    Article  Google Scholar 

  • Le Masson P, Hatchuel A, Weil B (2011) The interplay between creativity issues and design theories: a new perspective for design management studies? Creat Innov Manag 20(4):217–237

    Article  Google Scholar 

  • Le Masson P, Dorst K, Subrahmanian E (2013) Design theory: history, state of the arts and advancements. Res Eng Des 24(2):97–103

    Article  Google Scholar 

  • Lenfle S, Le Masson P, Weil B (2015) When project management meets design theory: revisiting the Manhattan and Polaris projects to characterize “radical innovation” and its managerial implications. Creativity Innov Manag (accepted)

  • Leniaud J-M (1994) Viollet-le-Duc ou les délires du système. Menges, Paris

    Google Scholar 

  • Lindemann U (2010) Systematic procedures supporting creativity—a contradiction? In: Taura T, Nagai Y (eds) Design creativity. Springer, London, pp 23–28

    Google Scholar 

  • Maldonado T (1960) New developments in industry and the training of designers. Archit Yearb 9:174–180

    Google Scholar 

  • Meurer M (1896) Die Ursprungsformen des griechischen Akanthusornamentes und ihre natürlichen Vorbilder. G. Reimer, Berlin

    Book  Google Scholar 

  • Moholy-Nagy (1938) The new vision: fundamentals of bauhaus design, painting, sculpture, and architecture. Norton, New York

    Google Scholar 

  • Moore GH (1988) The origins of forcing (Logic colloquium '86). In: Drake FR, Truss JK (eds) Studies in logic and the foundations of mathematics. North-Holland, Amsterdam, pp 143–173

  • Pahl G, Beitz W, Feldhusen J, Grote K-H (2007) Engineering design, a systematic approach (trans: Wallace K, Blessing L, Bauert F). Third English edition edn. Springer, London

  • Poincaré H (1908) La création mathématique. Bulletin de l’Institut Général de Psychologie 8(3)

  • Raynaud P (ed) (2004) Histoire de l’Ecole nationale supérieure des arts décoratfs 1ère partie (1766–1941). Edition spéciale du Journal de l’Ensad

  • Read H (1959) A concise history of modern painting. Praeger, London

    Google Scholar 

  • Redtenbacher F (1852) Prinzipien der Mechanik und des Maschinenbaus. Bassermann, Mannheim

    Google Scholar 

  • Reich Y (1995) A critical review of general design theory. Res Eng Des 7:1–18

    Article  Google Scholar 

  • Reuleaux F (1877) Briefe aus Philadelphia. Druck und Verlag von Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Reuleaux F, Moll CL (1862) Constructionslehre für den Maschinenbau, erster Band : die Construction der Maschinentheile. Fridriech Vieweh und Sohn, Braunschweig

    Google Scholar 

  • Rhodes M (1961) An analysis of creativity. The Phi Delta Kappan 42(7):305–310

    Google Scholar 

  • Riccini R (1998) History from things: Notes on the history of industrial design. Des Issues 14(3):43

    Article  Google Scholar 

  • Rice P (1994) An engineer imagines. Artemis, London

    Google Scholar 

  • Rodenacker WG (1970) Methodisches Konstruieren. Konstruktionsbücher. Springer, Berlin

    Book  Google Scholar 

  • Ross DW (1907) A theory of pure design: harmony, balance, rhythm. Houghton, Mifflin and Company, Boston

    Google Scholar 

  • Rötscher F (1927) Die Maschinenelemente. Verlag von Julius Springer, Berlin

    Google Scholar 

  • Schwartz FJ (1996) The Werkbund, design theory and mass culture before the first world war. Yale University Press, New Haven

    Google Scholar 

  • Shai O, Reich Y (2004a) Infused design: I theory. Res Eng Des 15(2):93–107

    Google Scholar 

  • Shai O, Reich Y (2004b) Infused design: II Practice. Res Eng Des 15(2):108–121

    Google Scholar 

  • Shai O, Reich Y, Hatchuel A, Subrahmanian E (2013) Creativity and scientific discovery with infused design and its analysis with C–K theory. Res Eng Des 24(2):201–214

    Article  Google Scholar 

  • Stoots J (2011) Karl Blossfeldt, indisputably modern. In: Rooco V (ed) European photo avant-garde, 1920s–1930s

  • Taura T, Nagai Y (2012) Concept generation for design creativity: a systematized theory and methodology. Springer, London

    Google Scholar 

  • Taura T, Nagai Y (2013) A systematized theory of creative concept generation in design: first-order and high-order concept generation. Res Eng Des 24(2):185–199

    Article  Google Scholar 

  • Tomiyama T, Yoshikawa H (1986) Extended general design theory, vol CS-R8604. Centre for mathematics and Computer Science, Amsterdam

  • Vitruvius (1999) Ten books on architecture. Cambridge University Press, Cambridge

    Google Scholar 

  • von Bach C (1896) Die Maschinen-Elemente, ihre Berechnung und Konstruktion: Mit Rücksicht auf die neueren Versuche 5. vermehrte Auflage edn. Verlag der J. G. Cotta’schen Buchhandlung, Stuttgart

  • von Bach (1924) Die Maschinen-Elemente, ihre Berechnung und Konstruktion : Mit Rücks. auf d. neueren Versuche 12. verm. Aufl. edn. Kröner, Leipzig

  • Wallas G (1926) The Art of Thought. Harcourt Brace, New York

    Google Scholar 

  • Weisberg RW (1992) Creativity Beyond The Myth of Genius. W. H. Freeman Company, New York

    Google Scholar 

  • Whitford F (1984) Bauhaus. World of art. Thames & Hudson, London

    Google Scholar 

  • Wick RK (2000) Teaching at the BAuhaus. Hatje Cantz

  • Yoshikawa H (1981) General design theory and a CAD system. In: Sata T, Warman E (eds) Man-Machine Communication in CAD/CAM, proceedings of the IFIP WG5.2-5.3 Working Conference 1980 (Tokyo). Amsterdam, North-Holland, pp 35–57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Le Masson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Masson, P., Hatchuel, A. & Weil, B. Design theory at Bauhaus: teaching “splitting” knowledge. Res Eng Design 27, 91–115 (2016). https://doi.org/10.1007/s00163-015-0206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-015-0206-z

Keywords

Navigation