Skip to main content
Log in

Bifurcations of a creeping air–water flow in a conical container

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shtern, V.: Counterflows. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  2. Herrada, M.A., Shtern, V.N.: Patterns of a creeping water-spout flow. J. Fluid Mech. 744, 65 (2014)

    Article  Google Scholar 

  3. Balci, A., Brøns, M., Herrada, M.A., Shtern, V.N.: Vortex breakdown in a truncated conical bioreactor. Fluid Dyn. Res. 47, 065503 (2015)

    Article  MathSciNet  Google Scholar 

  4. Liow, K.Y.S., Tan, B.T., Thouas, G., Thompson, M.C.: CFD modeling of the steady-state momentum and oxygen transport in a bioreactor that is driven by a rotating disk. Mod. Phys. Lett. B 23, 121 (2009)

    Article  MATH  Google Scholar 

  5. Ramazanov, Y.A., Kislykh, V.I., Kosyuk, I.P., Bakuleva, N.V., Shchurikhina, V.V.: Industrial production of vaccines using embryonic cells in gas-vortex gradient-less bioreactors. In: Egorov, A.M. (ed.) New Aspects of Biotechnology and Medicine’. ISBN: 1-60021-465-7, pp. 87–91 (2007)

  6. Shtern, V.N., Torregrosa, M.M., Herrada, M.A.: Effect of swirl decay on vortex breakdown in a confined steady axisymmetric flow. Phys. Fluids 24, 043601 (2012)

    Article  Google Scholar 

  7. Bödewadt, U.T.: Die Drehströmung über festem Grund. Z. Angew. Math. Mech. 20, 241 (1940)

    Article  MATH  Google Scholar 

  8. Ackerberg, R.C.: The viscous incompressible flow inside a cone. J. Fluid Mech. 21, 47 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schultz, V., Gorbach, G., Piesche, M.: Modeling fluid behavior and droplet interactions during liquid-liquid separation in hydrocyclones. Chem. Eng. Sci. 64, 3935 (2009)

    Article  Google Scholar 

  10. Ghodraty, M., Kuang, S. B., Yui, A. B., Vince, A., Barnett, G. D., Barnet, P. J.: CFD study of multiphase flow in classifying cyclone: effect of cone geometry. In: Proceedings of the ninth international conference on CFD in the mineral and process industries CSIRO, Melbourne, Australia 10–12 December (2012)

  11. Secchiaroli, A., Ricci, R., Montelpare, S., D’Alessandro, V.: Numerical simulation of turbulent flow in a Ranque–Hilsch vortex-tube. Int. J. Heat Mass Transf. 52, 5496 (2009)

    Article  MATH  Google Scholar 

  12. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964)

    Article  MATH  Google Scholar 

  13. Wakiya, S.: Axisymmetric flow of a viscous fluid near the vertex of a body. J. Fluid Mech. 78, 737 (1976)

    Article  MATH  Google Scholar 

  14. Liu, C.H., Joseph, D.D.: Stokes flow in conical trenches. SIAM J. Appl. Math. 34, 286 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weidman, P.D., Calmidi, V.: Instantaneous Stokes flow in a conical apex aligned with gravity and bounded by a stress-free surface. SIAM J. Appl. Math. 59, 1520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Malyuga, V.S.: Viscous eddies in a circular cone. J. Fluid Mech. 522, 101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shankar, P.N.: Moffatt eddies in the cone. J. Fluid Mech. 539, 113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shtern, V.: Moffatt eddies at an interface. Theor. Comput. Fluid Dyn. 28, 651 (2014)

    Article  Google Scholar 

  19. Brady, P.T., Herrmann, M., Lopez, J.M.: Two-fluid confined flow in a cylinder driven by a rotating end wall. Phys. Rev. E 85, 016308 (2012)

    Article  Google Scholar 

  20. Arnold, V.I.: Sur la gćometrie diffćrentielle des groupe de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319 (1966)

    Article  Google Scholar 

  21. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics, vol. 125. Springer, New York (1998)

    MATH  Google Scholar 

  22. Moffatt, H.K., Tsinober, A. (eds.): Topological Fluid Mechanics. In: Proceedings of IUTAM Symposium. Cambridge (1989)

  23. Moffatt, H.K., Bajer, K., Kimura, Y. (eds): IUTAM Symposium on Topological Fluid Dynamics: Theory and Applications. Procedia IUTAM 7, pp. 1–260. Elsevier, Philadelphia (2013)

  24. Hills, C.P.: Eddies induced in cylindrical containers by a rotating end wall. Phys. Fluids 13, 2279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herrada, M.A., Shtern, V.N., Lopez-Herrera, J.M.: Vortex breakdown in a water-spout flow. Phys. Fluids 25, 093604 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Brøns.

Additional information

Communicated by Tim Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, A., Brøns, M., Herrada, M.A. et al. Bifurcations of a creeping air–water flow in a conical container. Theor. Comput. Fluid Dyn. 30, 485–496 (2016). https://doi.org/10.1007/s00162-016-0391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0391-z

Keywords

Navigation